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Thelmportance of Being Tight

e (Accurately) measuring the size of relevant quantities is a
crucial step in science and engineering

e Computer science, and in particular algorithm design, tsano
exception

e Tight measures of (worst-case) time/space complexities,
approximation ratios etc. are crucial to understand howdgoo
algorithm is, and whether there is room for improvement
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Thelmportance of Being Tight

e Tight bounds sometimes are shown years after the design of an
algorithm

e Still, for several poly-time algorithms we are able to powi

tight running time bounds

EG: The worst-case running time &dkr geSort is ©(nlogn)

e Similarly, we have tight approximation bounds for many

approximation algorithms

EG: The approximation ratio of the classical primal-dual
algorithm for Steiner forest is exactly
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Thelmportance of Being Tight

e The overall situation for exact (exp-time) algorithms for
NP-hard problems is much worse

e Typically, tight time bounds are known only for trivial or
almost trivial (enumerative) algorithms

e Nonetheless, most of the research in this field was devoted to
the design of better algorithms, not of better analyticalgo

— The aim of this talk is introducing a non-standard analytica
tool, sometimes namddeasure & Conquerwhich leads to
much tighter (though possibly non-tight) running time badsin
for branch & reduce exact algorithms
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Exact Algorithms



Exact Algorithms

e The aim of exact algorithms is solving NP-hard problems
exactly with the smallest possible (exponential) runningget

e Exact algorithms are interesting for several reasons
< Need for exact solutions (e.g. decision problems)

o Reducing the running time from, say(2") to O(1.41")
roughly doubles the size of the instances solvable within a
given (large) time bound. This can’t be achieved using faste
computers!!

o Classical approaches (heuristics, approximation alymst
parameterized algorithms...) have limits and drawbac&s (n
guaranty, hardness of approximatid#i,1]-completeness...)

o New combinatorial and algorithmic challenges
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Branch & Reduce Algorithms

e The most common exact algorithms are based orthech &
reduceparadigm

e The idea is to apply sonreduction rulego reduce the size of
the problem, and then branch on two or more subproblems which
are solved recursively according to sobranching rules

e The analysis of such recursive algorithms is typically dase
thebounded search treiechnique: aneasureof the size of the
subproblems is defined. This measure is used to lower boend th
progressmade by the algorithm at each branching step.

e Though these algorithms are often very complicated, measur
used in their analysis are usually trivial (e.g., numberades or
edges in the graph).
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Bounded Search Trees

e Let P(n) be the number of base instances generated to solve a
problem of sizen > 0

e Suppose, as it is usual the case, that the application ottiedu
and branching rules takes polynomial time %1 Assume also
that the branching depth is bounded by a polynomial

e Then the running time of the algorithm is
O(P(n)n°W) = O*(P(n))

o O*() suppresses polynomial factors

e Itis possible to show by induction that(n) < A" for a proper
constant\ > 1
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Bounded Search Trees

e Consider a branching/reduction rilevhich generates
h(b) > 1 subproblems. Let — 07 be the size of thg-th
subproblem

o It must bes® > 0 (indeeds? > 0 for h(b) > 1)
o (03, ..., 0,4 ) is thebranching vector
e We obtain the following inequalities

h(b) h(b)

0
P(n)gz (n—5b<2)\” 5ﬂ<)\n:>f —1—2)\ 5 <0
j=1

71=1

e This gives a lower bound > \°, where)’ is the unique
positive root off°(-) (branching factoy.

e We can conclude that = max;{\°}
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The Independent
Set Problem



| ndependent Set

GivenG = (V, F/), themaximum independent gatoblem
(MIS) is to determine the maximum cardinalityG) of a subset
of pairwise non-adjacent nodaadependent sgt

OO
(3] a(G) =2
&-é
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Known Results
e NP-hard [Karp’72]

 Not approximable withirO(n'~¢) unlessP = NP
[Zucherman’06]

e IV |1]-complete [Downey&Fellows’95].
e No exactO(\°™) algorithm unless SNEPSUBEXP

[Impagliazzo,Paturi,Zane’01]

= The best we can hope for iSA \") exact algorithm for some
small constani € (1, 2].

—n. 12/



Known Results

e 0(1.261™) poly-space [Tarjan&Trojanowski'77]

e O(1.235™) poly-space [Jian’86]

e O(1.228™) poly-space()(1.211™) exp-space [Robson’86]

e better results for sparse graphs [Beigel’99, Chen,Kang3]
Thanks to Measure & Conguerpauch simplepoly-space

algorithm ¢ 10 lines of pseudo-code against100 lines In

[Robson’86]) is shown to have time complexity1.221™)
[Fomin, Grandoni, Kratsch’06]

We will consider a similar algorithm, and analyze it in a
similar (but simplified) way
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Reduction Rules
e Let us Iintroduce a few standard reduction rules for MIS

& connected components
o domination

¢ folding

& mirroring

O

e We will use only folding, but in the exercises the other rules
might turn to be useful
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Connected components

Given a graplG with connected components
Gy, ...,Gp,

(@) =) al(Gi)

Rem: One can solve the problems induced by ¢thés
Independently
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Domination

If there are two nodes andw such thatV|v] C N|w],
there is a maximum independent set which does not contain

N|z]=N (z)u{z}

5L~ 3
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Domination

For every node, there is a maximum independent set
which either contains or at least two nodes iV (v).

Exr 1. Prove Lemmas 1, 2, and 3
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Mirroring

A mirror of a nodev is a nodeu € N%(v) such that
N(v)—N(u) is a (possibly empty) clique
N?(v) are the nodes at distance 2 from v

mirrors ofv are denoted by/ (v)

<P P >
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Mirroring

For any node,
a(G) = max{a(G —v— M(w)),a(G — N|v])}

Exr: Prove Lem 4 (Hint: use Lem 3)
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Folding

Given a nodes with no anti-triangle inV(v), folding v
means

replacingN |v| with a clique containing one nodewv for
each anti-edgew of N(v);
adding edges between eacih and N(u)J N(w)-N[v].

we use7, to denote the graph after folding

- B SRTSR.
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Folding

Given a nodes with no anti-triangle inV(v), folding v
means

replacingN |v| with a clique containing one nodewv for
each anti-edgew of N(v);
adding edges between eacih and N(u)J N(w)-N[v].

we use7, to denote the graph after folding

- B SRTSR.

Rem 1: Folding can increase the number of nodes!
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Folding

Given a nodes with no anti-triangle inV(v), folding v
means

replacingN |v| with a clique containing one nodewv for
each anti-edgew of N(v);
adding edges between eacih and N(u)J N(w)-N[v].

we use7, to denote the graph after folding

- B SRTSR.

Rem 2: Nodes of degre& 2 are alwaydoldable
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Folding
For a foldable node, a(G) = 1 + a(G,)

‘:) @

Exr 3: Prove Lem 5 (Hint: use Lem 3)
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Folding

Rem: Lem 5 includes a few standard reductions as special cases

i@@@ :e
R 35,
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A Simple M| S Algorithm

int m s(G) {
if (G =0)return 0; //Base case
//Folding
Takewv of minimum degree,;
If (d(v) <2)return1+m s(G,);
/[“*Greedy” branching
Takev of maximum degree,
return max{ m s(G —v), 1 +m s(G — N|v]) };
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Standard Analysisof m s
Algorithm m s solves MIS inO*(1.33") time
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Standard Analysisof m s
Algorithm m s solves MIS inO*(1.33") time

Prf:

e Let P(n) be the number of base instances generated by the
algorithm. We will show by induction tha®(n) < A" for

A< 1.33

e In the base casB(0) =1 < N\

e When the algorithm folds a node, the number of nodes
decreases by at least one

Pn)<Pn—1)< A"t < \"
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Standard Analysisof m s

Algorithm m s solves MIS inO*(1.33") time

Pri:
e When the algorithm branches at a nadeith d(v) > 4, in one
subproblem it removesnode (i.e.v), and in the other it removes
1 +d(v) > 5 nodes (i.eN |v]):
P(n) < P(n—1)+ P(n —5)
<N )T (A>1.32..)
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Standard Analysisof m s
Algorithm m s solves MIS inO*(1.33") time

Prf:

e Otherwise, the algorithm branches at a nodad degree
exactly3, hence removing eithdror 4 nodes. However, in the
first case a node of degrées folded afterwards, with the
removal of at least more nodes

P(n) < P(n—3)+ P(n—4)
< AT AT N (A>1.22..))
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Standard Analysisof m s
Algorithm m s solves MIS inO*(1.33") time

Prf:

e Otherwise, the algorithm branches at a nodad degree
exactly3, hence removing eithdror 4 nodes. However, in the
first case a node of degrées folded afterwards, with the
removal of at least more nodes

P(n) < P(n—3)+ P(n—4)
< AT AT N (A>1.22..))

Rem: This is the best one can get with a standard analysis
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Measure & Conguer

e The classical approach tmproveonm s would be designing
refined branching and reduction rules. In particular, ores tio
Improve on thdight recurrences. The analysis is then performed
In a similar fashion

e In the standard analysis,is both the measure used in the
analysis and the quantity in terms of which the final time @bun
IS expressed

e However, one is free to use any, possibly sophisticated,
measuren in the analysis, provided that < f(n) for some
known functionf

e This way, one achieves a time bound of the kind
O*(A™) = O*(M ™), which is in the desired form
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Measure & Conguer

e The idea behind Measure & Conquer is focusing on the choice
of the measure

e |n fact, a more sophisticated measure may capture phenomena
which standard measures are not able to exploit, and heade le
to a tighter analysis of givenalgorithm

e We next show how to get a much better time boundfios
thanks to a better measure of subproblems size (without
changing the algorithm!)

e We will start by introducing an alternative, simple, measur
This measure does not immediately give a better time bourid, b
It will be a good starting point to define a really better measu
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An Alternative M easure
e Nodes of degre& 2 can be removed without branching

e Hence they do not really contribute to thigeof the problem
e For example, if the maximum degree2isthenm s solves the

problem in polynomial time!

|dea: define the size of the problem to be the number of nodes of
degree at least
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An Alternative M easure
Let n; be the number of nodes of degreand
nN>; = ZjZi T
We define the size of the problem to e= n-3 (rather than

=)

Rem: m = n>3 < n. Hence, if we prove a running time bound
in O*(\™), we immediately get &@*(\") time bound
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An Alternative Analysis
Algorithm m s solves MIS inO*(1.33") time
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An Alternative Analysis

Algorithm m s solves MIS inO*(1.33") time

(Alternative) Prf:
e Let us defings a base instance if the maximum degreé&-irs
2 (which impliesm = n>3 = 0)

e Let moreoverP(m) be the number of base instances generated
by the algorithm to solve an instance of size

e By the usual argument the running timeis(P(m)). We
prove by induction thaP(m) < \™ for A < 1.33
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An Alternative Analysis

Algorithm m s solves MIS inO*(1.33") time

(Alternative) Prf:
e INn the base case = (0. Thus

P0)=1< )

e Letm’ be the size of the problem after folding a naddt is
sufficient to show thatw' < m, from which

P(m) < P(m/) < X™ < \™

e This condition trivially holds when folding only removesaes
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An Alternative Analysis

Algorithm m s solves MIS inO*(1.33") time

(Alternative) Prf:

e In the remaining cas® (v) = {u, w} with uw ¢ E. In this
case we removév, u, w} and add a nodew with

d(uw) < d(u) + d(w) — 2. By case analysis:.” < m also in this
case

A
-
A
&
A
S
S
=

3 m—1+1
4 m—2+1

w W

vV IV
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An Alternative Analysis

Algorithm m s solves MIS inO*(1.33") time

(Alternative) Prf:
e Suppose now that we branch at a nedeith d(v) > 4. Note
that all the nodes of the graph have degreg (since we do not
fold). Forts = |{u € N(v) : d(u) = 3}/,
P(m) < Pm—1—t3)+ P(m—1—d(v))
<Pm—1)+Pm—5) < A" P4 A" <A™ (A>1.32..))

e Eventually, consider branching atd(v) = 3. In this case we
remove eitheil or 4 nodes of degre&. However, in the first case
the degree of thd neighbors ofv drops from3 to 2, with a
consequent further reduction of the sizedoy

P(m) < Pm—4)+P(m—4) < X"+ X1 <A™ (A>1.18..))
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A Better Measure

e When we branch at a node of large degree, we decrement by
the degree of many other nodes

e This is beneficial on long term, since we can remove nodes of
degree< 2 without branching

e We are not exploiting this fact in the current analysis
|dea: assign a largeweightw; < 1 to nodes of larger degree
and let the size of the problem be the sum of node weights. This

way, when the degree of a node decreases, the size of the
problem decreases as well
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A Better Measure

for a constantv € (0, 1] to be fixed later,
(0 if < 2

w; = w ifi=3;

1 otherwise
Letw(v) = waw)
the sizem = m(G) of G is

m = Z w(v) =w-nzg+ n>y
veV (G)
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A Better Analysis

Algorithm m s solves MIS inO*(1.29™) time

Prf:
e With the usual notation, let us show thatm) < \™ for
A< 1.29

e Inthe base case =0, P(0) =1 < \°

e In case of folding, letn’ be the size of the subproblem. it is
sufficient to show thatw’ < m. Then

P(m) < P(m/) < X™ < \™

e This condition is satisfied when nodes are only removed ¢pein
the weight increasing with the degree)
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A Better Analysis
Algorithm m s solves MIS inO*(1.29™) time

Prf:

e The unique remaining case is th¥itv) = {u, w}, with v and

w not adjacent. In this case we remduve u, w}, and add a node
uww With d(uw) < d(u) + d(w) — 2. Hence it is sufficient to
show that

w(v) + w(u) + ww) — w(sw) = wu) + w(w) — w(uw) >0
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A Better Analysis
Algorithm m s solves MIS inO*(1.29™) time

Prf:

e By a simple case analysis

d(u) | dlw) | dluw) | w(u) +w(w) —w(uw) > 0
2 2 2 0+0-0>0

2 3 3 O4+w—w>0

2 >4 | >4 0+1—-1>0

3 3 4 wH+w—1>0

3 >4 | >4 w+1-1>0

>4 | >4 | >4 1+1-1>0

 We can conclude that > £ (new constraint on the weights!)
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A Better Analysis

Algorithm m s solves MIS inO*(1.29™) time

Prf:
e Consider now branching at a nodgd(v) > 5. Letd; be the
degree of théth neighbor ofv (which thus has weight, ). Then

P(m) < P(m — wq) — Z(Wdi —wg;—1)) + P(m — wae) — dei)

1

5)

< P(m_ 1 _Z(wdi _wdi_l)) +P(S_ 1 _dei)

=1 =

e Observe that we can repladg> 6 with d; = 5. In fact in both
casesv,;, = 1 andw,;, — wy. 1 = 0. Hence we can assume
d; € {3, 4,5} (finite number of recurrences!!!)
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A Better Analysis

Algorithm m s solves MIS inO*(1.29™) time

Prf:
e By case enumeration

(P(m -1-5w-0(lw)-00)+P(m-1-50w-01-01)
P(m-1-4w-1(1w)-00)+P(m-1-4w-11-01)
Pim-1-4w-0(1w)-10)+P(m-1-4w-01-11)
Pm-1-3w-2(1w)-00+P(m-1-3w-21-01)

| P(m-1-0w-0(1w) - 50) + P(m - 1 - 0w - 0-1 - 51)
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A Better Analysis

Algorithm m s solves MIS inO*(1.29™) time

Prf:

e Consider now branching at a nodgd(v) = 4. By a similar

argument (but withl; € {3,4})

(P(m -1 - 4w -0-(1w)) + P(m - 1 - 4w - 0-1)
Pm-1-3w-1(1w))+P(m-1-3w-11)
Pim-1-2w-2-(1w))+P(m-1-2w-21)
Pm-1-1w-3(1Qw)+P(m-1-1w-31)

\P(m -1-Ow-4(1w))+P(m-1-0w-41)
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A Better Analysis

Algorithm m s solves MIS inO*(1.29™) time

Pri:
e Consider eventually branching at a nadel(v) = 3. By an
analogous argument (but with(v) = w3 = w andd; = 3)

Pim) < P(m—w—3w)+ P(m —w —3w)

e For everyw € (0.5, 1], the set of recurrences above provides an
upper bound\(w) on \. Our goal is minimizing\(w) (hence
getting a better time bound)

e Via exhaustive (grid) enumeration, we obtainge- 0.7 which
gives\(w) < 1.29
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An Even Better Measure
We can extend the previous approach to larger degrees

if ¢ <2;

If ¢ = 4;

)
0
w If i =3;
w/

\ 1 otherwise

where() < w < o' <1

Algorithm m s solves MIS inO*(1.26") time
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EXxercises
Exr 5: Prove Thr 3 (Hintw = 0.750, w’ = 0.951)

Exr 6: What do you expect that would happen if we added one
extra weightus = w”? Can you guess any pattern?

Exr 7*. Design a better algorithm for MIS, using possibly the
other mentioned reduction rules. Analyze your algorithrthim
standard way and via Measure & Conquer

Exr 8%: Can you imagine an alternative, promising measure for
MIS?
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Quasiconvex Analysis of
Backtracking Algorithms



Optimal Weights Computation
e When the number of distinct weights grows, an exhaustive

exploration might be too slow

e We next describe a general tool to perform this computahon |
an (exponentially) faster way
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Multivariate Recurrences

e Consider a collection of integraheasuresn, ..., my,
describing different aspects of the size of the problem icensd

EG: In the analysis ofri s we usedn; = n3 andms = n>4

e These measure naturally induce a set of multivariate renaga
of the following kind for each branching

P(my,...,mq) §P(m1—511’,1,...,md—52,1)—|—...

+ P(m1 — 511),h(b)7 N 127, 53,]1(1)))

Rem: some of theSS,j might be negative. For example, deleting
one edge incident to a node of degreave decrease-, but
INncreasens
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Multivariate Recurrences
e Solving multivariate recurrences is typically rather cdicgied

e A common alternative is turning them into univariate
recurrences by considering a linear combination of the oreas
(aggregated measure

m(a) =army + ...+ agmy

e Theweightsa; must satisfy the conditiott := ", «; 9, > 0,
l.e. m(«) decreases in each subproblem (we albew for
h =1)

EG: In the analysis om s we usedv; = w anday = 1. The
condition is satisfied for every € 0.5, 1]
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Multivariate Recurrences

e The resulting set of univariate recurrences can be solvétein
standard way (for fixed weights)

e |n particular, for each branchirgwe compute the (unique)
positive root\’(«) of

P a) =1=) AT Xy
J

e This gives a running time bound of the kil (\ (/)2 @i ™)
where

AMa) = max A (a)
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Quasiconvex Functions

A function f : D — R, with D C R? convex, is
guasiconvex if the set

f~:={xeD: f(r)<a}
IS convex for any: € R

f@) 4




Quasiconvex Functions

Function\(«), a € R¢, is quasiconvex

Prf:

e Since the max of a finite number of quasiconvex functions Is
quasiconvey, it is sufficient to show that eacia) is
guasiconvex

e \(«) is the positive root of*(\, ar) = 1 — 32 A~ 2%

e Hence
b<a _ d . \b _ d . — >0 b
AN ={a eR: N(a) <af={a€R’: ) ;a i <1}

b

o g’(a) :== > a” =%, is convex as sum of convex functions,
and trivially its level sets are convex, includigg=~*

Function\(«) is quasiconvex over any convéx C R¢
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ApplicationstoM& C

e We can use these facts to optimize the weights much faster in
the Measure & Conguer framework

e Suppose we define a set of linear constraints on the weights

such that

(a) the size of each subproblem does not increase
(b) the initial measuren = m(«) is upper bounded by, where
n IS astandardmeasure for the problem

e This gives a convex domain of weights On that domain we
can compute the minimum valugq) of the quasiconvex

function A\(«)

o The resulting running time i©*(\(&)™®) = O*(A(&)")
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Randomized L ocal Search

e There are known techniques to find efficiently the minimum of
a quasi-convex functions (see e.qg. [Eppstein’01,Gaspers]

e We successfully applied the following, very fast and easy to
Implement, approach based mndomized local searcfin
simulated annealing style)

o We start from any feasible initial value

o We add to it a random vector in a given rarfge\, A]

o If the resultinga’ is feasible and gives(a’) < A(«), we set
a = o

o We iterate the process, reducing the valué\af no
Improvement is achieved for a large number of steps

o The process halts wheh drops below a given valua’
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Randomized L ocal Search

T
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Randomized L ocal Search

T
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Randomized L ocal Search
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Randomized L ocal Search

T

—n. 45/



Randomized L ocal Search

T

_—

~

—n. 45/



Randomized L ocal Search
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Randomized L ocal Search

T
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Randomized L ocal Search
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Randomized L ocal Search
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Randomized L ocal Search
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Randomized L ocal Search
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Randomized L ocal Search

T

|

D

&V

Rem: This algorithm does not guarantee closeness to the optimal
A(@). However it is accurate in practice. More important, it
providesfeasibleupper bounds
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L ower Bounds



L ower Bounds

e Measure & Conguer sometimes leads to much better running
time bounds

e Still, these bounds might not be tight

e Hence, it makes sense to search for (exponential) lowerdsoun
on the running time of the algorithm considered (not of the
problem!)

e A lower bound may give an idea of how far the analysis Is from
being tight
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A Lower Bound for m s
The running time ofri s is Q(2"/4)

Prf.
e Consider the graptyr,, consisting oft = n /4 copies of ak,

e The algorithm might branch af. In both subproblems
{aq, by, cq,dy} 1S removed, either immediately or later on by
folding. This leaves &),

e \We obtain a recurrence of the typ&n) > 2P(n — 4) for the
number of subproblems, which givéxn) > 27/4
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A Lower Bound for m s

The running time ofri s is Q(27/4)
Exr 8: Find a larger lower bound on the running timenofs
(Hint: ©(3™/%) = Q(1.20"), maybe better)

Exr 9*: Consider the variant afi s where the algorithm, after

the base case, branches on connected components whergossib
Can you find a good lower bound on the running time of this
modified algorithm?

Rem: Typically finding lower bounds on connected graphs is
much more complicated
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Applications of
Measure & Conquer



| ndependent Set

GivenG = (V, E), theindependent sgiroblem (MIS) is to
determine the maximum cardinality(G) of a subset of pairwise
non-adjacent nodes@dependent sgt

OO
€ a(G) =2
&-é

—n. 51/



| ndependent Set

MIS can be solved Iin
O*(1.221™) time and polynomial space

Prf:
e Simple branching algorithm

int m s(G) {
if(|V(G)| < 1) return |[V(G)|;
If(3 componentC' C G) return m s(C)+m s(G — O);
If(3 verticesv andw: N|w| C N[v]) return m s(G — {v});
If(d a vertexv, with d(v) = 2) return 1+m s(G,);
select a vertex of maximum degree, which minimizeg& (N (v))|;
return max{m s(G — {v} — M (v)), 1+m s(G — N |v])};

e Analysis similar to the one outlined before
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Traveling Salesman Problem

Given a weighteds = (V, E), thetraveling salesman
problemproblem (TSP) is to compute a minimum weight cycle
spanningl” (TSP tou)
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Traveling Salesman Problem

TSP can be solved i@*(1.260™) time
In cubic graphs

Pri:
e Design a non-trivial branching algorithm

e Analyze it using, as measur@;| — |F| — |C| < |V|

e HereF'Is a set offorcededges and’ the set of 4-cycles aof;
which induce connected componentsin- F
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3-Coloring

GivenG = (V, E) and a set o8 colors, the3-coloring
problem @-COL) is to find an assignment of colors to nodes
such that adjacent nodes are colored differently
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3-Coloring

Given a set of variables on domains of sie and a set of
constraints each one involving at méstariables, the

(a, b)-constraint satisfactioproblem (CSP) is to find an
assignment of the variables satisfying all the constraints

Rem: 3-COL is a special case @8, 2)-CSP

—n. 56/



3-Coloring
3-COL can be solved in
O*(1.329™) time
Prf:
e Non-trivial reduction ta(3, 2)-CSP

e Non-trivial branching algorithm solvingt, 2)-CSP in
O0*(1.365") time

e In the analysis the measure is a linear combinatiof o n, of
the number of variables with domain of sizend4 (variables
with smaller domain can be filtered out)
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Dominating Set

GivenG = (V, E), thedominating seproblem (MDS) is to
determine the minimum cardinalityG) of a subset of nodeB
such that any node W — D is adjacent to some node In
(dominating set

OO0
© 5(G) = 2
¢
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Dominating Set

Given a universé/ and a collection of subsefs C 2¥, the
set covemproblem (MSC) is to determine a minimum cardinality
subcollectionC C S such thatugeeS = U (set covey

Rem: MDS can reduced to MSC by lettirig = V' and
S = {N|v| : v € V}. This instance has subsets and elements

U=1{ab,cd,e}
S, =1a,b, e}

Sy ={a,b,c e}
S. =1{b,c,d}

Sq = {c,d, e}

S.=1{a,b,d, e}
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Dominating Set
MDS can be solved i®*(1.803™) time

Proof: Design a simple algorithm solving MSC in
O*(1.381“1+151) time = O*(1.381%") time algo for MDS

int mscES) {
iIf(|S| = 0) return 0;
If(34S,R €S : S C R) return mscS\{S});
if(Ju € U(S)J auniqueS € S : u € S) return 1+msc(delS, S));
takeS € S of maximum cardinality;
If(|.S| = 2) return poly-msc(S)
return min{msc@S\{S}), 1+msc(delf, S))};

Exr 10: Prove the theorem above
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Dominating Set
MDS can be solved in
O*(1.527™) time

Proof:
e Consider the same reduction to MSC and the same algorithm
as before

e Give a different weight to sets of different cardinality and
elements of different frequency

Exr 11*: Prove the theorem above

MDS can be solved in
O*(1.507™) time
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Variants of Dominating Set

GivenG = (V, E), theminimum independent dominating
setproblem (MIDS) is to determine the minimum cardinality of
a dominating set ofr which is also an independent set

MIDS can be solved iW*(1.358")
time

GivenG = (V, E), theminimum dominating clique
problem (MDC) is to determine the minimum cardinality of a
dominating set of7 which is also a clique

MDC can be solved il0*(1.324™)
time
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Connected Dominating Set

GivenG = (V, E), theconnected dominating sptoblem
(ConDomS) is to determine the minimum cardinality) of a
dominating set of> which induces a connected graph
(connected dominating get

oG

§'(G) = 2
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Connected Dominating Set

Connected
dominating set can be solved @i (1.941") time

Proof:
e Design an algorithm which gradually expands a connected
graph, until it becomes dominating

e Assign a different weight to nodes dominating a different
number of nodes not yet dominated

e Assign an extra weight to nodes which are still not selectad n
discarded, giving a smaller extra weight to nodes whose vamo
makes the problem infeasible

Rem: without the refined measure one does not improve on
trivial 2™!
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Combinatorial BoundsviaM&C
e M&C can be used to derive better combinatorial bounds

An n-node
graph has)*(1.716™) minimal dominating sets

Pri: Design a listing algorithm and analyze it via M&C
e Listing algorithms can often be used to solve weighted
problems, where reduction rules are harder to get

The weighted
minimum dominating set problem can be solvedif{1.578")
time

Prf: Use a variant of the listing algorithm above, implementing a
trivial weighted set cover reduction rule
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Feedback Vertex Set

GivenG = (V, E), thefeedback vertex sproblem (FVS)
IS to determine the minimum cardinaligy G) of a subset of
nodes whose removal makésacyclic feedback vertex set

Om0
© 0(G) =1
&
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Feedback Vertex Set

FVS can be
solved inO*(1.755™) time

Prf:

e Design an algorithm based on branching rules and maximum
Independent sets computation to solve the equivalent marim
Induced forest problem

e Analyze it using, as measure,
O-|F|+1-|N@)|+ (14+a)|V—-F—N(t)]

e HereF' is a set of forced nodes amdas anactivenode
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Apologies

| apologize for related and improved results that | forgot to
mention
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THANKS!!!
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