A Measure & Conquer Approach
for the
Analysis of Exact Algorithms

Fabrizio Grandoni

Tor Vergata Rome
gr andoni @li sp. uni rona2. it

Thelmportance of Being Tight

e (Accurately) measuring the size of relevant quantities is a
crucial step in science and engineering

e Computer science, and in particular algorithm design, tsano
exception

e Tight measures of (worst-case) time/space complexities,
approximation ratios etc. are crucial to understand howdgoo
algorithm is, and whether there is room for improvement

—n. 2/

Thelmportance of Being Tight

e Tight bounds sometimes are shown years after the design of an
algorithm

e Still, for several poly-time algorithms we are able to powi

tight running time bounds

EG: The worst-case running time &dkr geSort is ©(nlogn)

e Similarly, we have tight approximation bounds for many

approximation algorithms

EG: The approximation ratio of the classical primal-dual
algorithm for Steiner forest is exactly

—n. 3/

Thelmportance of Being Tight

e The overall situation for exact (exp-time) algorithms for
NP-hard problems is much worse

e Typically, tight time bounds are known only for trivial or
almost trivial (enumerative) algorithms

e Nonetheless, most of the research in this field was devoted to
the design of better algorithms, not of better analyticalgo

— The aim of this talk is introducing a non-standard analytica
tool, sometimes namddeasure & Conquerwhich leads to
much tighter (though possibly non-tight) running time badsin
for branch & reduce exact algorithms

—n. 4/

Exact Algorithms

Exact Algorithms

e The aim of exact algorithms is solving NP-hard problems
exactly with the smallest possible (exponential) runningget

e Exact algorithms are interesting for several reasons
< Need for exact solutions (e.g. decision problems)

o Reducing the running time from, say(2") to O(1.41")
roughly doubles the size of the instances solvable within a
given (large) time bound. This can’t be achieved using faste
computers!!

o Classical approaches (heuristics, approximation alymst
parameterized algorithms...) have limits and drawbac&s (n
guaranty, hardness of approximatid#i,1]-completeness...)

o New combinatorial and algorithmic challenges

—n. 6/

Branch & Reduce Algorithms

e The most common exact algorithms are based orthech &
reduceparadigm

e The idea is to apply sonreduction rulego reduce the size of
the problem, and then branch on two or more subproblems which
are solved recursively according to sobranching rules

e The analysis of such recursive algorithms is typically dase
thebounded search treiechnique: aneasureof the size of the
subproblems is defined. This measure is used to lower boend th
progressmade by the algorithm at each branching step.

e Though these algorithms are often very complicated, measur
used in their analysis are usually trivial (e.g., numberades or
edges in the graph).

—n. 7/

Bounded Search Trees

e Let P(n) be the number of base instances generated to solve a
problem of sizen > 0

e Suppose, as it is usual the case, that the application ottiedu
and branching rules takes polynomial time %1 Assume also
that the branching depth is bounded by a polynomial

e Then the running time of the algorithm is
O(P(n)n°W) = O*(P(n))

o O*() suppresses polynomial factors

e Itis possible to show by induction that(n) < A" for a proper
constant\ > 1

—n. 8/

Bounded Search Trees

e Consider a branching/reduction rilevhich generates
h(b) > 1 subproblems. Let — 07 be the size of thg-th
subproblem

o It must bes® > 0 (indeeds? > 0 for h(b) > 1)
o (03, ..., 0,4) is thebranching vector
e We obtain the following inequalities

h(b) h(b)

0
P(n)gz (n—5b<2)\” 5ﬂ<)\n:>f —1—2)\ 5 <0
j=1

71=1

e This gives a lower bound > \°, where)’ is the unique
positive root off°(-) (branching factoy.

e We can conclude that = max;{\°}

—n. 9/

The Independent
Set Problem

| ndependent Set

GivenG = (V, F/), themaximum independent gatoblem
(MIS) is to determine the maximum cardinalityG) of a subset
of pairwise non-adjacent nodaadependent sgt

OO
(3] a(G) =2
&-é

—n. 11/

Known Results
e NP-hard [Karp’72]

 Not approximable withirO(n'~¢) unlessP = NP
[Zucherman’06]

e IV |1]-complete [Downey&Fellows’95].
e No exactO(\°™) algorithm unless SNEPSUBEXP

[Impagliazzo,Paturi,Zane’01]

= The best we can hope for iSA \") exact algorithm for some
small constani € (1, 2].

—n. 12/

Known Results

e 0(1.261™) poly-space [Tarjan&Trojanowski'77]

e O(1.235™) poly-space [Jian’86]

e O(1.228™) poly-space()(1.211™) exp-space [Robson’86]

e better results for sparse graphs [Beigel’99, Chen,Kang3]
Thanks to Measure & Conguerpauch simplepoly-space

algorithm ¢ 10 lines of pseudo-code against100 lines In

[Robson’86]) is shown to have time complexity1.221™)
[Fomin, Grandoni, Kratsch’06]

We will consider a similar algorithm, and analyze it in a
similar (but simplified) way

—n. 13/

Reduction Rules
e Let us Iintroduce a few standard reduction rules for MIS

& connected components
o domination

¢ folding

& mirroring

O

e We will use only folding, but in the exercises the other rules
might turn to be useful

—n. 14/

Connected components

Given a graplG with connected components
Gy, ...,Gp,

(@) =) al(Gi)

Rem: One can solve the problems induced by ¢thés
Independently

—n. 15/

Domination

If there are two nodes andw such thatV|v] C N|w],
there is a maximum independent set which does not contain

N|z]=N (z)u{z}

5L~ 3

—n. 16/

Domination

For every node, there is a maximum independent set
which either contains or at least two nodes iV (v).

Exr 1. Prove Lemmas 1, 2, and 3

—n. 17/

Mirroring

A mirror of a nodev is a nodeu € N%(v) such that
N(v)—N(u) is a (possibly empty) clique
N?(v) are the nodes at distance 2 from v

mirrors ofv are denoted by/ (v)

<P P >

—n. 18/

Mirroring

For any node,
a(G) = max{a(G —v— M(w)),a(G — N|v])}

Exr: Prove Lem 4 (Hint: use Lem 3)

—n. 19/

Folding

Given a nodes with no anti-triangle inV(v), folding v
means

replacingN |v| with a clique containing one nodewv for
each anti-edgew of N(v);
adding edges between eacih and N(u)J N(w)-N[v].

we use7, to denote the graph after folding

- B SRTSR.

—n. 20/

Folding

Given a nodes with no anti-triangle inV(v), folding v
means

replacingN |v| with a clique containing one nodewv for
each anti-edgew of N(v);
adding edges between eacih and N(u)J N(w)-N[v].

we use7, to denote the graph after folding

- B SRTSR.

Rem 1: Folding can increase the number of nodes!

—n. 20/

Folding

Given a nodes with no anti-triangle inV(v), folding v
means

replacingN |v| with a clique containing one nodewv for
each anti-edgew of N(v);
adding edges between eacih and N(u)J N(w)-N[v].

we use7, to denote the graph after folding

- B SRTSR.

Rem 2: Nodes of degre& 2 are alwaydoldable

—n. 20/

Folding
For a foldable node, a(G) = 1 + a(G,)

‘:) @

Exr 3: Prove Lem 5 (Hint: use Lem 3)

—n. 21/

Folding

Rem: Lem 5 includes a few standard reductions as special cases

i@@@ :e
R 35,

—n. 22/

A Simple M| S Algorithm

int m s(G) {
if (G =0)return 0; //Base case
//Folding
Takewv of minimum degree,;
If (d(v) <2)return1+m s(G,);
/[“*Greedy” branching
Takev of maximum degree,
return max{ m s(G —v), 1 +m s(G — N|v]) };

—n. 23/

Standard Analysisof m s
Algorithm m s solves MIS inO*(1.33") time

—n. 24/

Standard Analysisof m s
Algorithm m s solves MIS inO*(1.33") time

Prf:

e Let P(n) be the number of base instances generated by the
algorithm. We will show by induction tha®(n) < A" for

A< 1.33

e In the base casB(0) =1 < N\

e When the algorithm folds a node, the number of nodes
decreases by at least one

Pn)<Pn—1)< A"t < \"

—n. 24/

Standard Analysisof m s

Algorithm m s solves MIS inO*(1.33") time

Pri:
e When the algorithm branches at a nadeith d(v) > 4, in one
subproblem it removesnode (i.e.v), and in the other it removes
1 +d(v) > 5 nodes (i.eN |v]):
P(n) < P(n—1)+ P(n —5)
<N)T (A>1.32..)

—n. 24/

Standard Analysisof m s
Algorithm m s solves MIS inO*(1.33") time

Prf:

e Otherwise, the algorithm branches at a nodad degree
exactly3, hence removing eithdror 4 nodes. However, in the
first case a node of degrées folded afterwards, with the
removal of at least more nodes

P(n) < P(n—3)+ P(n—4)
< AT AT N (A>1.22..))

—n. 24/

Standard Analysisof m s
Algorithm m s solves MIS inO*(1.33") time

Prf:

e Otherwise, the algorithm branches at a nodad degree
exactly3, hence removing eithdror 4 nodes. However, in the
first case a node of degrées folded afterwards, with the
removal of at least more nodes

P(n) < P(n—3)+ P(n—4)
< AT AT N (A>1.22..))

Rem: This is the best one can get with a standard analysis

—n. 24/

Measure & Conquer

Measure & Conguer

e The classical approach tmproveonm s would be designing
refined branching and reduction rules. In particular, ores tio
Improve on thdight recurrences. The analysis is then performed
In a similar fashion

e In the standard analysis,is both the measure used in the
analysis and the quantity in terms of which the final time @bun
IS expressed

e However, one is free to use any, possibly sophisticated,
measuren in the analysis, provided that < f(n) for some
known functionf

e This way, one achieves a time bound of the kind
O*(A™) = O*(M ™), which is in the desired form

—n. 26/

Measure & Conguer

e The idea behind Measure & Conquer is focusing on the choice
of the measure

e |n fact, a more sophisticated measure may capture phenomena
which standard measures are not able to exploit, and heade le
to a tighter analysis of givenalgorithm

e We next show how to get a much better time boundfios
thanks to a better measure of subproblems size (without
changing the algorithm!)

e We will start by introducing an alternative, simple, measur
This measure does not immediately give a better time bourid, b
It will be a good starting point to define a really better measu

—n. 27/

An Alternative M easure
e Nodes of degre& 2 can be removed without branching

e Hence they do not really contribute to thigeof the problem
e For example, if the maximum degree2isthenm s solves the

problem in polynomial time!

|dea: define the size of the problem to be the number of nodes of
degree at least

—n. 28/

An Alternative M easure
Let n; be the number of nodes of degreand
nN>; = ZjZi T
We define the size of the problem to e= n-3 (rather than

=)

Rem: m = n>3 < n. Hence, if we prove a running time bound
in O*(\™), we immediately get &@*(\") time bound

—n. 29/

An Alternative Analysis
Algorithm m s solves MIS inO*(1.33") time

—n. 30/

An Alternative Analysis

Algorithm m s solves MIS inO*(1.33") time

(Alternative) Prf:
e Let us defings a base instance if the maximum degreé&-irs
2 (which impliesm = n>3 = 0)

e Let moreoverP(m) be the number of base instances generated
by the algorithm to solve an instance of size

e By the usual argument the running timeis(P(m)). We
prove by induction thaP(m) < \™ for A < 1.33

—n. 30/

An Alternative Analysis

Algorithm m s solves MIS inO*(1.33") time

(Alternative) Prf:
e INn the base case = (0. Thus

P0)=1<)

e Letm’ be the size of the problem after folding a naddt is
sufficient to show thatw' < m, from which

P(m) < P(m/) < X™ < \™

e This condition trivially holds when folding only removesaes

—n. 30/

An Alternative Analysis

Algorithm m s solves MIS inO*(1.33") time

(Alternative) Prf:

e In the remaining cas® (v) = {u, w} with uw ¢ E. In this
case we removév, u, w} and add a nodew with

d(uw) < d(u) + d(w) — 2. By case analysis:.” < m also in this
case

A
-
A
&
A
S
S
=

3 m—1+1
4 m—2+1

w W

vV IV

—n. 30/

An Alternative Analysis

Algorithm m s solves MIS inO*(1.33") time

(Alternative) Prf:
e Suppose now that we branch at a nedeith d(v) > 4. Note
that all the nodes of the graph have degreg (since we do not
fold). Forts = |{u € N(v) : d(u) = 3}/,
P(m) < Pm—1—t3)+ P(m—1—d(v))
<Pm—1)+Pm—5) < A" P4 A" <A™ (A>1.32..))

e Eventually, consider branching atd(v) = 3. In this case we
remove eitheil or 4 nodes of degre&. However, in the first case
the degree of thd neighbors ofv drops from3 to 2, with a
consequent further reduction of the sizedoy

P(m) < Pm—4)+P(m—4) < X"+ X1 <A™ (A>1.18..))

—n. 30/

A Better Measure

e When we branch at a node of large degree, we decrement by
the degree of many other nodes

e This is beneficial on long term, since we can remove nodes of
degree< 2 without branching

e We are not exploiting this fact in the current analysis
|dea: assign a largeweightw; < 1 to nodes of larger degree
and let the size of the problem be the sum of node weights. This

way, when the degree of a node decreases, the size of the
problem decreases as well

—n. 31/

A Better Measure

for a constantv € (0, 1] to be fixed later,
(0 if < 2

w; = w ifi=3;

1 otherwise
Letw(v) = waw)
the sizem = m(G) of G is

m = Z w(v) =w-nzg+ n>y
veV (G)

—n. 32/

A Better Analysis

Algorithm m s solves MIS inO*(1.29™) time

Prf:
e With the usual notation, let us show thatm) < \™ for
A< 1.29

e Inthe base case =0, P(0) =1 < \°

e In case of folding, letn’ be the size of the subproblem. it is
sufficient to show thatw’ < m. Then

P(m) < P(m/) < X™ < \™

e This condition is satisfied when nodes are only removed ¢pein
the weight increasing with the degree)

—n. 33/

A Better Analysis
Algorithm m s solves MIS inO*(1.29™) time

Prf:

e The unique remaining case is th¥itv) = {u, w}, with v and

w not adjacent. In this case we remduve u, w}, and add a node
uww With d(uw) < d(u) + d(w) — 2. Hence it is sufficient to
show that

w(v) + w(u) + ww) — w(sw) = wu) + w(w) — w(uw) >0

—n. 33/

A Better Analysis
Algorithm m s solves MIS inO*(1.29™) time

Prf:

e By a simple case analysis

d(u) | dlw) | dluw) | w(u) +w(w) —w(uw) > 0
2 2 2 0+0-0>0

2 3 3 O4+w—w>0

2 >4 | >4 0+1—-1>0

3 3 4 wH+w—1>0

3 >4 | >4 w+1-1>0

>4 | >4 | >4 1+1-1>0

 We can conclude that > £ (new constraint on the weights!)

—n. 33/

A Better Analysis

Algorithm m s solves MIS inO*(1.29™) time

Prf:
e Consider now branching at a nodgd(v) > 5. Letd; be the
degree of théth neighbor ofv (which thus has weight,). Then

P(m) < P(m — wq) — Z(Wdi —wg;—1)) + P(m — wae) — dei)

1

5)

< P(m_ 1 _Z(wdi _wdi_l)) +P(S_ 1 _dei)

=1 =

e Observe that we can repladg> 6 with d; = 5. In fact in both
casesv,;, = 1 andw,;, — wy. 1 = 0. Hence we can assume
d; € {3, 4,5} (finite number of recurrences!!!)

—n. 33/

A Better Analysis

Algorithm m s solves MIS inO*(1.29™) time

Prf:
e By case enumeration

(P(m -1-5w-0(lw)-00)+P(m-1-50w-01-01)
P(m-1-4w-1(1w)-00)+P(m-1-4w-11-01)
Pim-1-4w-0(1w)-10)+P(m-1-4w-01-11)
Pm-1-3w-2(1w)-00+P(m-1-3w-21-01)

| P(m-1-0w-0(1w) - 50) + P(m - 1 - 0w - 0-1 - 51)

—pn. 33/

A Better Analysis

Algorithm m s solves MIS inO*(1.29™) time

Prf:

e Consider now branching at a nodgd(v) = 4. By a similar

argument (but withl; € {3,4})

(P(m -1 - 4w -0-(1w)) + P(m - 1 - 4w - 0-1)
Pm-1-3w-1(1w))+P(m-1-3w-11)
Pim-1-2w-2-(1w))+P(m-1-2w-21)
Pm-1-1w-3(1Qw)+P(m-1-1w-31)

\P(m -1-Ow-4(1w))+P(m-1-0w-41)

—pn. 33/

A Better Analysis

Algorithm m s solves MIS inO*(1.29™) time

Pri:
e Consider eventually branching at a nadel(v) = 3. By an
analogous argument (but with(v) = w3 = w andd; = 3)

Pim) < P(m—w—3w)+ P(m —w —3w)

e For everyw € (0.5, 1], the set of recurrences above provides an
upper bound\(w) on \. Our goal is minimizing\(w) (hence
getting a better time bound)

e Via exhaustive (grid) enumeration, we obtainge- 0.7 which
gives\(w) < 1.29

—pn. 33/

An Even Better Measure
We can extend the previous approach to larger degrees

if ¢ <2;

If ¢ = 4;

)
0
w If i =3;
w/

\ 1 otherwise

where() < w < o' <1

Algorithm m s solves MIS inO*(1.26") time

—n. 34/

EXxercises
Exr 5: Prove Thr 3 (Hintw = 0.750, w’ = 0.951)

Exr 6: What do you expect that would happen if we added one
extra weightus = w”? Can you guess any pattern?

Exr 7*. Design a better algorithm for MIS, using possibly the
other mentioned reduction rules. Analyze your algorithrthim
standard way and via Measure & Conquer

Exr 8%: Can you imagine an alternative, promising measure for
MIS?

—n. 35/

Quasiconvex Analysis of
Backtracking Algorithms

Optimal Weights Computation
e When the number of distinct weights grows, an exhaustive

exploration might be too slow

e We next describe a general tool to perform this computahon |
an (exponentially) faster way

—n. 37/

Multivariate Recurrences

e Consider a collection of integraheasuresn, ..., my,
describing different aspects of the size of the problem icensd

EG: In the analysis ofri s we usedn; = n3 andms = n>4

e These measure naturally induce a set of multivariate renaga
of the following kind for each branching

P(my,...,mq) §P(m1—511’,1,...,md—52,1)—|—...

+ P(m1 — 511),h(b)7 N 127, 53,]1(1)))

Rem: some of theSS,j might be negative. For example, deleting
one edge incident to a node of degreave decrease-, but
INncreasens

—n. 38/

Multivariate Recurrences
e Solving multivariate recurrences is typically rather cdicgied

e A common alternative is turning them into univariate
recurrences by considering a linear combination of the oreas
(aggregated measure

m(a) =army + ...+ agmy

e Theweightsa; must satisfy the conditiott := ", «; 9, > 0,
l.e. m(«) decreases in each subproblem (we albew for
h =1)

EG: In the analysis om s we usedv; = w anday = 1. The
condition is satisfied for every € 0.5, 1]

—pn. 39/

Multivariate Recurrences

e The resulting set of univariate recurrences can be solvétein
standard way (for fixed weights)

e |n particular, for each branchirgwe compute the (unique)
positive root\’(«) of

P a) =1=) AT Xy
J

e This gives a running time bound of the kil (\ (/)2 @i ™)
where

AMa) = max A (a)

—n. 40/

Quasiconvex Functions

A function f : D — R, with D C R? convex, is
guasiconvex if the set

f~:={xeD: f(r)<a}
IS convex for any: € R

f@) 4

Quasiconvex Functions

Function\(«), a € R¢, is quasiconvex

Prf:

e Since the max of a finite number of quasiconvex functions Is
quasiconvey, it is sufficient to show that eacia) is
guasiconvex

e \(«) is the positive root of*(\, ar) = 1 — 32 A~ 2%

e Hence
b<a _ d . \b _ d . — >0 b
AN ={a eR: N(a) <af={a€R’:) ;a i <1}

b

o g’(a) :== > a” =%, is convex as sum of convex functions,
and trivially its level sets are convex, includigg=~*

Function\(«) is quasiconvex over any convéx C R¢

—n. 42/

ApplicationstoM& C

e We can use these facts to optimize the weights much faster in
the Measure & Conguer framework

e Suppose we define a set of linear constraints on the weights

such that

(a) the size of each subproblem does not increase
(b) the initial measuren = m(«) is upper bounded by, where
n IS astandardmeasure for the problem

e This gives a convex domain of weights On that domain we
can compute the minimum valugq) of the quasiconvex

function A\(«)

o The resulting running time i©*(\(&)™®) = O*(A(&)")

—n. 43/

Randomized L ocal Search

e There are known techniques to find efficiently the minimum of
a quasi-convex functions (see e.qg. [Eppstein’01,Gaspers]

e We successfully applied the following, very fast and easy to
Implement, approach based mndomized local searcfin
simulated annealing style)

o We start from any feasible initial value

o We add to it a random vector in a given rarfge\, A]

o If the resultinga’ is feasible and gives(a’) < A(«), we set
a = o

o We iterate the process, reducing the valué\af no
Improvement is achieved for a large number of steps

o The process halts wheh drops below a given valua’

—n. 44/

Randomized L ocal Search

T

—n. 45/

Randomized L ocal Search

T

—n. 45/

Randomized L ocal Search

.

_—

—n. 45/

Randomized L ocal Search

T

—n. 45/

Randomized L ocal Search

T

_—

~

—n. 45/

Randomized L ocal Search

.

—n. 45/

Randomized L ocal Search

T

—n. 45/

Randomized L ocal Search

T~—

~

_—

—n. 45/

Randomized L ocal Search

.

L

—n. 45/

Randomized L ocal Search

—n. 45/

Randomized L ocal Search

—n. 45/

Randomized L ocal Search

T

|

D

&V

Rem: This algorithm does not guarantee closeness to the optimal
A(@). However it is accurate in practice. More important, it
providesfeasibleupper bounds

—n. 45/

L ower Bounds

L ower Bounds

e Measure & Conguer sometimes leads to much better running
time bounds

e Still, these bounds might not be tight

e Hence, it makes sense to search for (exponential) lowerdsoun
on the running time of the algorithm considered (not of the
problem!)

e A lower bound may give an idea of how far the analysis Is from
being tight

—n. 47/

A Lower Bound for m s
The running time ofri s is Q(2"/4)

Prf.
e Consider the graptyr,, consisting oft = n /4 copies of ak,

e The algorithm might branch af. In both subproblems
{aq, by, cq,dy} 1S removed, either immediately or later on by
folding. This leaves &),

e \We obtain a recurrence of the typ&n) > 2P(n — 4) for the
number of subproblems, which givéxn) > 27/4

—n. 48/

A Lower Bound for m s

The running time ofri s is Q(27/4)
Exr 8: Find a larger lower bound on the running timenofs
(Hint: ©(3™/%) = Q(1.20"), maybe better)

Exr 9*: Consider the variant afi s where the algorithm, after

the base case, branches on connected components whergossib
Can you find a good lower bound on the running time of this
modified algorithm?

Rem: Typically finding lower bounds on connected graphs is
much more complicated

—n. 49/

Applications of
Measure & Conquer

| ndependent Set

GivenG = (V, E), theindependent sgiroblem (MIS) is to
determine the maximum cardinality(G) of a subset of pairwise
non-adjacent nodes@dependent sgt

OO
€ a(G) =2
&-é

—n. 51/

| ndependent Set

MIS can be solved Iin
O*(1.221™) time and polynomial space

Prf:
e Simple branching algorithm

int m s(G) {
if(|V(G)| < 1) return |[V(G)|;
If(3 componentC' C G) return m s(C)+m s(G — O);
If(3 verticesv andw: N|w| C N[v]) return m s(G — {v});
If(d a vertexv, with d(v) = 2) return 1+m s(G,);
select a vertex of maximum degree, which minimizeg& (N (v))|;
return max{m s(G — {v} — M (v)), 1+m s(G — N |v])};

e Analysis similar to the one outlined before

—n. 52/

Traveling Salesman Problem

Given a weighteds = (V, E), thetraveling salesman
problemproblem (TSP) is to compute a minimum weight cycle
spanningl” (TSP tou)

—n. 53/

Traveling Salesman Problem

TSP can be solved i@*(1.260™) time
In cubic graphs

Pri:
e Design a non-trivial branching algorithm

e Analyze it using, as measur@;| — |F| — |C| < |V|

e HereF'Is a set offorcededges and’ the set of 4-cycles aof;
which induce connected componentsin- F

—n. 54/

3-Coloring

GivenG = (V, E) and a set o8 colors, the3-coloring
problem @-COL) is to find an assignment of colors to nodes
such that adjacent nodes are colored differently

—n. 55/

3-Coloring

Given a set of variables on domains of sie and a set of
constraints each one involving at méstariables, the

(a, b)-constraint satisfactioproblem (CSP) is to find an
assignment of the variables satisfying all the constraints

Rem: 3-COL is a special case @8, 2)-CSP

—n. 56/

3-Coloring
3-COL can be solved in
O*(1.329™) time
Prf:
e Non-trivial reduction ta(3, 2)-CSP

e Non-trivial branching algorithm solvingt, 2)-CSP in
O0*(1.365") time

e In the analysis the measure is a linear combinatiof o n, of
the number of variables with domain of sizend4 (variables
with smaller domain can be filtered out)

—n. 57/

Dominating Set

GivenG = (V, E), thedominating seproblem (MDS) is to
determine the minimum cardinalityG) of a subset of nodeB
such that any node W — D is adjacent to some node In
(dominating set

OO0
© 5(G) = 2
¢

—n. 58/

Dominating Set

Given a universé/ and a collection of subsefs C 2¥, the
set covemproblem (MSC) is to determine a minimum cardinality
subcollectionC C S such thatugeeS = U (set covey

Rem: MDS can reduced to MSC by lettirig = V' and
S = {N|v| : v € V}. This instance has subsets and elements

U=1{ab,cd,e}
S, =1a,b, e}

Sy ={a,b,c e}
S. =1{b,c,d}

Sq = {c,d, e}

S.=1{a,b,d, e}

—n. 59/

Dominating Set
MDS can be solved i®*(1.803™) time

Proof: Design a simple algorithm solving MSC in
O*(1.381“1+151) time = O*(1.381%") time algo for MDS

int mscES) {
iIf(|S| = 0) return 0;
If(34S,R €S : S C R) return mscS\{S});
if(Ju € U(S)J auniqueS € S : u € S) return 1+msc(delS, S));
takeS € S of maximum cardinality;
If(|.S| = 2) return poly-msc(S)
return min{msc@S\{S}), 1+msc(delf, S))};

Exr 10: Prove the theorem above

—n. 60/

Dominating Set
MDS can be solved in
O*(1.527™) time

Proof:
e Consider the same reduction to MSC and the same algorithm
as before

e Give a different weight to sets of different cardinality and
elements of different frequency

Exr 11*: Prove the theorem above

MDS can be solved in
O*(1.507™) time

—n. 61/

Variants of Dominating Set

GivenG = (V, E), theminimum independent dominating
setproblem (MIDS) is to determine the minimum cardinality of
a dominating set ofr which is also an independent set

MIDS can be solved iW*(1.358")
time

GivenG = (V, E), theminimum dominating clique
problem (MDC) is to determine the minimum cardinality of a
dominating set of7 which is also a clique

MDC can be solved il0*(1.324™)
time

—n. 62/

Connected Dominating Set

GivenG = (V, E), theconnected dominating sptoblem
(ConDomS) is to determine the minimum cardinality) of a
dominating set of> which induces a connected graph
(connected dominating get

oG

§'(G) = 2

—n. 63/

Connected Dominating Set

Connected
dominating set can be solved @i (1.941") time

Proof:
e Design an algorithm which gradually expands a connected
graph, until it becomes dominating

e Assign a different weight to nodes dominating a different
number of nodes not yet dominated

e Assign an extra weight to nodes which are still not selectad n
discarded, giving a smaller extra weight to nodes whose vamo
makes the problem infeasible

Rem: without the refined measure one does not improve on
trivial 2™!

—n. 64/

Combinatorial BoundsviaM&C
e M&C can be used to derive better combinatorial bounds

An n-node
graph has)*(1.716™) minimal dominating sets

Pri: Design a listing algorithm and analyze it via M&C
e Listing algorithms can often be used to solve weighted
problems, where reduction rules are harder to get

The weighted
minimum dominating set problem can be solvedif{1.578")
time

Prf: Use a variant of the listing algorithm above, implementing a
trivial weighted set cover reduction rule

—n. 65/

Feedback Vertex Set

GivenG = (V, E), thefeedback vertex sproblem (FVS)
IS to determine the minimum cardinaligy G) of a subset of
nodes whose removal makésacyclic feedback vertex set

Om0
© 0(G) =1
&

—n. 66/

Feedback Vertex Set

FVS can be
solved inO*(1.755™) time

Prf:

e Design an algorithm based on branching rules and maximum
Independent sets computation to solve the equivalent marim
Induced forest problem

e Analyze it using, as measure,
O-|F|+1-|N@)|+ (14+a)|V—-F—N(t)]

e HereF' is a set of forced nodes amdas anactivenode

—n. 67/

Apologies

| apologize for related and improved results that | forgot to
mention

—n. 68/

THANKS!!!

	Large The Importance of Being Tight
	Large The Importance of Being Tight
	Large The Importance of Being Tight
	Large Exact Algorithms
	Large Branch & Reduce Algorithms
	Large Bounded Search Trees
	Large Bounded Search Trees
	Large Independent Set
	Large Known Results
	Large Known Results
	Large Reduction Rules
	Large Connected components
	Large Domination
	Large Domination
	Large Mirroring
	Large Mirroring
	Large Folding
	Large Folding
	Large Folding

	Large Folding
	Large Folding
	Large A Simple MIS Algorithm
	Large Standard Analysis of {	t mis}
	Large Standard Analysis of {	t mis}
	Large Standard Analysis of {	t mis}
	Large Standard Analysis of {	t mis}
	Large Standard Analysis of {	t mis}

	Large Measure & Conquer
	Large Measure & Conquer
	Large An Alternative Measure
	Large An Alternative Measure
	Large An Alternative Analysis
	Large An Alternative Analysis
	Large An Alternative Analysis
	Large An Alternative Analysis
	Large An Alternative Analysis

	Large A Better Measure
	Large A Better Measure
	Large A Better Analysis
	Large A Better Analysis
	Large A Better Analysis
	Large A Better Analysis
	Large A Better Analysis
	Large A Better Analysis
	Large A Better Analysis

	Large An Even Better Measure
	Large Exercises
	Large Optimal Weights Computation
	Large Multivariate Recurrences
	Large Multivariate Recurrences
	Large Multivariate Recurrences
	Large Quasiconvex Functions
	Large Quasiconvex Functions
	Large Applications to M&C
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search

	Large Lower Bounds
	Large A Lower Bound for {	t mis}
	Large A Lower Bound for {	t mis}
	Large Independent Set
	Large Independent Set
	Large Traveling Salesman Problem
	Large Traveling Salesman Problem
	Large 3-Coloring
	Large 3-Coloring
	Large 3-Coloring
	Large Dominating Set
	Large Dominating Set
	Large Dominating Set
	Large Dominating Set
	Large Variants of Dominating Set
	Large Connected Dominating Set
	Large Connected Dominating Set
	Large Combinatorial Bounds via M&C
	Large Feedback Vertex Set
	Large Feedback Vertex Set
	Large Apologies

