
A Measure & Conquer Approach
for the

Analysis of Exact Algorithms

Fabrizio Grandoni
Tor Vergata Rome

grandoni@disp.uniroma2.it

– p. 1/69

The Importance of Being Tight

• (Accurately) measuring the size of relevant quantities is a
crucial step in science and engineering

• Computer science, and in particular algorithm design, is not an
exception

• Tight measures of (worst-case) time/space complexities,
approximation ratios etc. are crucial to understand how good an
algorithm is, and whether there is room for improvement

– p. 2/69

The Importance of Being Tight

• Tight bounds sometimes are shown years after the design of an
algorithm

• Still, for several poly-time algorithms we are able to provide
tight running time bounds

EG: The worst-case running time ofMergeSort is Θ(n log n)

• Similarly, we have tight approximation bounds for many
approximation algorithms

EG: The approximation ratio of the classical primal-dual
algorithm for Steiner forest is exactly2

– p. 3/69

The Importance of Being Tight

• The overall situation for exact (exp-time) algorithms for
NP-hard problems is much worse

• Typically, tight time bounds are known only for trivial or
almost trivial (enumerative) algorithms

• Nonetheless, most of the research in this field was devoted to
the design of better algorithms, not of better analytical tools

⇒ The aim of this talk is introducing a non-standard analytical
tool, sometimes namedMeasure & Conquer, which leads to
much tighter (though possibly non-tight) running time bounds
for branch & reduce exact algorithms

– p. 4/69

Exact Algorithms

– p. 5/69

Exact Algorithms

• The aim of exact algorithms is solving NP-hard problems
exactly with the smallest possible (exponential) running time

• Exact algorithms are interesting for several reasons

⋄ Need for exact solutions (e.g. decision problems)

⋄ Reducing the running time from, say,O(2n) to O(1.41n)

roughly doubles the size of the instances solvable within a
given (large) time bound. This can’t be achieved using faster
computers!!

⋄ Classical approaches (heuristics, approximation algorithms,
parameterized algorithms...) have limits and drawbacks (no
guaranty, hardness of approximation,W [1]-completeness...)

⋄ New combinatorial and algorithmic challenges

– p. 6/69

Branch & Reduce Algorithms

• The most common exact algorithms are based on thebranch &

reduceparadigm

• The idea is to apply somereduction rulesto reduce the size of
the problem, and then branch on two or more subproblems which
are solved recursively according to somebranching rules

• The analysis of such recursive algorithms is typically based on
thebounded search treetechnique: ameasureof the size of the
subproblems is defined. This measure is used to lower bound the
progressmade by the algorithm at each branching step.

• Though these algorithms are often very complicated, measures
used in their analysis are usually trivial (e.g., number of nodes or
edges in the graph).

– p. 7/69

Bounded Search Trees
• Let P (n) be the number of base instances generated to solve a
problem of sizen ≥ 0

• Suppose, as it is usual the case, that the application of reduction
and branching rules takes polynomial time (inn). Assume also
that the branching depth is bounded by a polynomial

• Then the running time of the algorithm is
O(P (n)nO(1)) = O∗(P (n))

⋄ O∗() suppresses polynomial factors

• It is possible to show by induction thatP (n) ≤ λn for a proper
constantλ > 1

– p. 8/69

Bounded Search Trees
• Consider a branching/reduction ruleb which generates
h(b) ≥ 1 subproblems. Letn − δb

j be the size of thej-th
subproblem

⋄ It must beδb
j ≥ 0 (indeedδb

j > 0 for h(b) > 1)

⋄ (δb
1, . . . , δ

b
h(b)) is thebranching vector

• We obtain the following inequalities

P (n) ≤

h(b)
∑

j=1

P (n − δb
j) ≤

h(b)
∑

j=1

λn−δb
j ≤ λn ⇒ f b(λ) := 1 −

h(b)
∑

j=1

λ−δb
j ≤ 0

• This gives a lower boundλ ≥ λb, whereλb is the unique
positive root off b(·) (branching factor).

• We can conclude thatλ = maxb{λ
b}

– p. 9/69

The Independent

Set Problem

– p. 10/69

Independent Set

Def: GivenG = (V,E), themaximum independent setproblem
(MIS) is to determine the maximum cardinalityα(G) of a subset
of pairwise non-adjacent nodes (independent set)

a
b c

de
α(G) = 2

– p. 11/69

Known Results
• NP-hard [Karp’72]

• Not approximable withinO(n1−ǫ) unlessP = NP

[Zucherman’06]

• W [1]-complete [Downey&Fellows’95].

• No exactO(λ o(n)) algorithm unless SNP⊆SUBEXP
[Impagliazzo,Paturi,Zane’01]

⇒ The best we can hope for is aO(λn) exact algorithm for some
small constantλ ∈ (1, 2].

– p. 12/69

Known Results
• O(1.261n) poly-space [Tarjan&Trojanowski’77]

• O(1.235n) poly-space [Jian’86]

• O(1.228n) poly-space,O(1.211n) exp-space [Robson’86]

• better results for sparse graphs [Beigel’99, Chen,Kanj&Xia’03]

• Thanks to Measure & Conquer, amuch simplerpoly-space
algorithm (≃ 10 lines of pseudo-code against≃ 100 lines in
[Robson’86]) is shown to have time complexityO(1.221n)

[Fomin, Grandoni, Kratsch’06]

⇒ We will consider a similar algorithm, and analyze it in a
similar (but simplified) way

– p. 13/69

Reduction Rules
• Let us introduce a few standard reduction rules for MIS

⋄ connected components

⋄ domination

⋄ folding

⋄ mirroring

⋄ ...

• We will use only folding, but in the exercises the other rules
might turn to be useful

– p. 14/69

Connected components

Lem 1: Given a graphG with connected components
G1, . . . , Gh,

α(G) =
∑

i

α(Gi)

Rem: One can solve the problems induced by theGi’s
independently

– p. 15/69

Domination
Lem 2: If there are two nodesv andw such thatN [v] ⊆ N [w],
there is a maximum independent set which does not containw

⋄ N [x]=N(x)∪{x}

v w

⇒
v w

– p. 16/69

Domination
Lem 3: For every nodev, there is a maximum independent set
which either containsv or at least two nodes inN(v).

v

w

⇒
v

w

Exr 1: Prove Lemmas 1, 2, and 3

– p. 17/69

Mirroring

Def: A mirror of a nodev is a nodeu ∈ N 2(v) such that
N(v)−N(u) is a (possibly empty) clique

⋄ N 2(v) are the nodes at distance 2 from v

⋄ mirrors ofv are denoted byM(v)

v

u

v

u

v

u

v

u

– p. 18/69

Mirroring

Lem 4: For any nodev,
α(G) = max{α(G − v − M(v)), α(G − N [v])}

Exr: Prove Lem 4 (Hint: use Lem 3)

– p. 19/69

Folding

Def: Given a nodev with no anti-triangle inN(v), folding v

means

• replacingN [v] with a clique containing one nodeuw for
each anti-edgeuw of N(v);

• adding edges between eachuw and N(u)∪ N(w)-N[v].

⋄ we useGv to denote the graph after folding

v

u w

a b c

⇒
uw

a b c

v

u w z

a b c d

⇒
uz wz

a b c d

– p. 20/69

Folding

Def: Given a nodev with no anti-triangle inN(v), folding v

means

• replacingN [v] with a clique containing one nodeuw for
each anti-edgeuw of N(v);

• adding edges between eachuw and N(u)∪ N(w)-N[v].

⋄ we useGv to denote the graph after folding

v

u w

a b c

⇒
uw

a b c

v

u w z

a b c d

⇒
uz wz

a b c d

Rem 1: Folding can increase the number of nodes!

– p. 20/69

Folding

Def: Given a nodev with no anti-triangle inN(v), folding v

means

• replacingN [v] with a clique containing one nodeuw for
each anti-edgeuw of N(v);

• adding edges between eachuw and N(u)∪ N(w)-N[v].

⋄ we useGv to denote the graph after folding

v

u w

a b c

⇒
uw

a b c

v

u w z

a b c d

⇒
uz wz

a b c d

Rem 2: Nodes of degree≤ 2 are alwaysfoldable

– p. 20/69

Folding

Lem 5: For a foldable nodev, α(G) = 1 + α(Gv)

v

u w z

a b c d

⇔
uz wz

a b c d

v

u w z

a b c d

⇔
uz wz

a b c d

Exr 3: Prove Lem 5 (Hint: use Lem 3)

– p. 21/69

Folding

Rem: Lem 5 includes a few standard reductions as special cases

v

u w

a b c

⇒
a b c

v

u w

a b c

⇒
u w

a b c

v

u w

a b c

⇒
w

a b c

– p. 22/69

A Simple MIS Algorithm

int mis(G) {
if (G = ∅) return 0; //Base case

//Folding
Takev of minimum degree;
if (d(v) ≤ 2) return 1 +mis(Gv);
//“Greedy” branching
Takev of maximum degree;
return max{ mis(G − v), 1 + mis(G − N [v]) };

}

– p. 23/69

Standard Analysis of mis

Thr: Algorithm mis solves MIS inO∗(1.33n) time

– p. 24/69

Standard Analysis of mis

Thr: Algorithm mis solves MIS inO∗(1.33n) time

Prf:
• Let P (n) be the number of base instances generated by the
algorithm. We will show by induction thatP (n) ≤ λn for
λ < 1.33

• In the base caseP (0) = 1 ≤ λ0

• When the algorithm folds a node, the number of nodes
decreases by at least one

P (n) ≤ P (n − 1) ≤ λn−1 ≤ λn

– p. 24/69

Standard Analysis of mis

Thr: Algorithm mis solves MIS inO∗(1.33n) time

Prf:
• When the algorithm branches at a nodev with d(v) ≥ 4, in one
subproblem it removes1 node (i.e.v), and in the other it removes
1 + d(v) ≥ 5 nodes (i.e.N [v]):

P (n) ≤ P (n − 1) + P (n − 5)

≤ λn−1 + λn−5 ≤ λn (λ ≥ 1.32 . . .)

– p. 24/69

Standard Analysis of mis

Thr: Algorithm mis solves MIS inO∗(1.33n) time

Prf:
• Otherwise, the algorithm branches at a nodev of degree
exactly3, hence removing either1 or 4 nodes. However, in the
first case a node of degree2 is folded afterwards, with the
removal of at least2 more nodes

P (n) ≤ P (n − 3) + P (n − 4)

≤ λn−3 + λn−4 ≤ λn (λ ≥ 1.22 . . .)

– p. 24/69

Standard Analysis of mis

Thr: Algorithm mis solves MIS inO∗(1.33n) time

Prf:
• Otherwise, the algorithm branches at a nodev of degree
exactly3, hence removing either1 or 4 nodes. However, in the
first case a node of degree2 is folded afterwards, with the
removal of at least2 more nodes

P (n) ≤ P (n − 3) + P (n − 4)

≤ λn−3 + λn−4 ≤ λn (λ ≥ 1.22 . . .)

Rem: This is the best one can get with a standard analysis

– p. 24/69

Measure & Conquer

– p. 25/69

Measure & Conquer

• The classical approach toimproveonmis would be designing
refined branching and reduction rules. In particular, one tries to
improve on thetight recurrences. The analysis is then performed
in a similar fashion

• In the standard analysis,n is both the measure used in the
analysis and the quantity in terms of which the final time bound
is expressed

• However, one is free to use any, possibly sophisticated,
measurem in the analysis, provided thatm ≤ f(n) for some
known functionf

• This way, one achieves a time bound of the kind
O∗(λm) = O∗(λf(n)), which is in the desired form

– p. 26/69

Measure & Conquer

• The idea behind Measure & Conquer is focusing on the choice
of the measure

• In fact, a more sophisticated measure may capture phenomena
which standard measures are not able to exploit, and hence lead
to a tighter analysis of agivenalgorithm

• We next show how to get a much better time bound formis

thanks to a better measure of subproblems size (without
changing the algorithm!)

• We will start by introducing an alternative, simple, measure.
This measure does not immediately give a better time bound, but
it will be a good starting point to define a really better measure

– p. 27/69

An Alternative Measure
• Nodes of degree≤ 2 can be removed without branching

• Hence they do not really contribute to thesizeof the problem

• For example, if the maximum degree is2, thenmis solves the
problem in polynomial time!

Idea: define the size of the problem to be the number of nodes of
degree at least3

– p. 28/69

An Alternative Measure
Def: Let ni be the number of nodes of degreei, and
n≥i =

∑

j≥i nj

• We define the size of the problem to bem = n≥3 (rather than
m = n)

Rem: m = n≥3 ≤ n. Hence, if we prove a running time bound
in O∗(λm), we immediately get aO∗(λn) time bound

– p. 29/69

An Alternative Analysis

Thr: Algorithm mis solves MIS inO∗(1.33n) time

– p. 30/69

An Alternative Analysis

Thr: Algorithm mis solves MIS inO∗(1.33n) time

(Alternative) Prf:
• Let us defineG a base instance if the maximum degree inG is
2 (which impliesm = n≥3 = 0)

• Let moreoverP (m) be the number of base instances generated
by the algorithm to solve an instance of sizem

• By the usual argument the running time isO∗(P (m)). We
prove by induction thatP (m) ≤ λm for λ < 1.33

– p. 30/69

An Alternative Analysis

Thr: Algorithm mis solves MIS inO∗(1.33n) time

(Alternative) Prf:
• In the base casem = 0. Thus

P (0) = 1 ≤ λ0

• Let m′ be the size of the problem after folding a nodev. It is
sufficient to show thatm′ ≤ m, from which

P (m) ≤ P (m′) ≤ λm′

≤ λm

• This condition trivially holds when folding only removes nodes

– p. 30/69

An Alternative Analysis

Thr: Algorithm mis solves MIS inO∗(1.33n) time

(Alternative) Prf:
• In the remaining caseN(v) = {u,w} with uw /∈ E. In this
case we remove{v, u, w} and add a nodeuw with
d(uw) ≤ d(u) + d(w) − 2. By case analysism′ ≤ m also in this
case

d(u) d(w) d(uw) m′

2 2 2 m

2 ≥ 3 ≥ 3 m − 1 + 1

≥ 3 ≥ 3 ≥ 4 m − 2 + 1

– p. 30/69

An Alternative Analysis

Thr: Algorithm mis solves MIS inO∗(1.33n) time

(Alternative) Prf:
• Suppose now that we branch at a nodev with d(v) ≥ 4. Note
that all the nodes of the graph have degree≥ 3 (since we do not
fold). For t3 = |{u ∈ N(v) : d(u) = 3}|,

P (m) ≤ P (m − 1 − t3) + P (m − 1 − d(v))

≤ P (m − 1) + P (m − 5) ≤ λm−1 + λm−5 ≤ λm (λ ≥ 1.32 . . .)

• Eventually, consider branching atv, d(v) = 3. In this case we
remove either1 or 4 nodes of degree3. However, in the first case
the degree of the3 neighbors ofv drops from3 to 2, with a
consequent further reduction of the size by3

P (m) ≤ P (m − 4) + P (m − 4) ≤ λm−4 + λm−4 ≤ λm (λ ≥ 1.18 . . .)

– p. 30/69

A Better Measure
• When we branch at a node of large degree, we decrement by1

the degree of many other nodes

• This is beneficial on long term, since we can remove nodes of
degree≤ 2 without branching

• We are not exploiting this fact in the current analysis

Idea: assign a largerweightωi ≤ 1 to nodes of larger degreei,
and let the size of the problem be the sum of node weights. This
way, when the degree of a node decreases, the size of the
problem decreases as well

– p. 31/69

A Better Measure
Def:
• for a constantω ∈ (0, 1] to be fixed later,

ωi =















0 if i ≤ 2;

ω if i = 3;

1 otherwise.

• Let ω(v) = ωd(v)

• the sizem = m(G) of G is

m =
∑

v∈V (G)

ω(v) = ω · n3 + n≥4

– p. 32/69

A Better Analysis

Thr: Algorithm mis solves MIS inO∗(1.29n) time

Prf:
• With the usual notation, let us show thatP (m) ≤ λm for
λ < 1.29

• In the base casem = 0, P (0) = 1 ≤ λ0

• In case of folding, letm′ be the size of the subproblem. it is
sufficient to show thatm′ ≤ m. Then

P (m) ≤ P (m′) ≤ λm′

≤ λm

• This condition is satisfied when nodes are only removed (being
the weight increasing with the degree)

– p. 33/69

A Better Analysis

Thr: Algorithm mis solves MIS inO∗(1.29n) time

Prf:
• The unique remaining case is thatN(v) = {u,w}, with u and
w not adjacent. In this case we remove{v, u, w}, and add a node
uw with d(uw) ≤ d(u) + d(w) − 2. Hence it is sufficient to
show that

ω(v) + ω(u) + ω(w) − ω(sw) = ω(u) + ω(w) − ω(uw) ≥ 0

– p. 33/69

A Better Analysis

Thr: Algorithm mis solves MIS inO∗(1.29n) time

Prf:
• By a simple case analysis

d(u) d(w) d(uw) ω(u) + ω(w) − ω(uw) ≥ 0

2 2 2 0 + 0 − 0 ≥ 0

2 3 3 0 + ω − ω ≥ 0

2 ≥ 4 ≥ 4 0 + 1 − 1 ≥ 0

3 3 4 ω + ω − 1 ≥ 0

3 ≥ 4 ≥ 4 ω + 1 − 1 ≥ 0

≥ 4 ≥ 4 ≥ 4 1 + 1 − 1 ≥ 0

• We can conclude thatω ≥ 1
2

(new constraint on the weights!)

– p. 33/69

A Better Analysis

Thr: Algorithm mis solves MIS inO∗(1.29n) time

Prf:
• Consider now branching at a nodev, d(v) ≥ 5. Let di be the
degree of theith neighbor ofv (which thus has weightωdi

). Then

P (m) ≤ P (m − ωd(v) −
∑

i

(ωdi
− ωdi−1)) + P (m − ωd(v) −

∑

i

ωdi
)

≤ P (m − 1 −
5

∑

i=1

(ωdi
− ωdi−1)) + P (s − 1 −

5
∑

i=1

ωdi
)

• Observe that we can replacedi ≥ 6 with di = 5. In fact in both
casesωdi

= 1 andωdi
− ωdi−1 = 0. Hence we can assume

di ∈ {3, 4, 5} (finite number of recurrences!!!)

– p. 33/69

A Better Analysis

Thr: Algorithm mis solves MIS inO∗(1.29n) time

Prf:
• By case enumeration

P (m) ≤















































P (m - 1 - 5·ω - 0·(1-ω) - 0·0) + P (m - 1 - 5·ω - 0·1 - 0·1)

P (m - 1 - 4·ω - 1·(1-ω) - 0·0) + P (m - 1 - 4·ω - 1·1 - 0·1)

P (m - 1 - 4·ω - 0·(1-ω) - 1·0) + P (m - 1 - 4·ω - 0·1 - 1·1)

P (m - 1 - 3·ω - 2·(1-ω) - 0·0) + P (m - 1 - 3·ω - 2·1 - 0·1)

. . .

P (m - 1 - 0·ω - 0·(1-ω) - 5·0) + P (m - 1 - 0·ω - 0·1 - 5·1)

– p. 33/69

A Better Analysis

Thr: Algorithm mis solves MIS inO∗(1.29n) time

Prf:
• Consider now branching at a nodev, d(v) = 4. By a similar
argument (but withdi ∈ {3, 4})

P (m) ≤







































P (m - 1 - 4·ω - 0·(1-ω)) + P (m - 1 - 4·ω - 0·1)

P (m - 1 - 3·ω - 1·(1-ω)) + P (m - 1 - 3·ω - 1·1)

P (m - 1 - 2·ω - 2·(1-ω)) + P (m - 1 - 2·ω - 2·1)

P (m - 1 - 1·ω - 3·(1-ω)) + P (m - 1 - 1·ω - 3·1)

P (m - 1 - 0·ω - 4·(1-ω)) + P (m - 1 - 0·ω - 4·1)

– p. 33/69

A Better Analysis

Thr: Algorithm mis solves MIS inO∗(1.29n) time

Prf:
• Consider eventually branching at a nodev, d(v) = 3. By an
analogous argument (but withω(v) = ω3 = ω anddi = 3)

P (m) ≤ P (m − ω − 3ω) + P (m − ω − 3ω)

• For everyω ∈ [0.5, 1], the set of recurrences above provides an
upper boundλ(ω) onλ. Our goal is minimizingλ(ω) (hence
getting a better time bound)

• Via exhaustive (grid) enumeration, we obtainedω = 0.7 which
givesλ(ω) < 1.29

– p. 33/69

An Even Better Measure
• We can extend the previous approach to larger degrees

ωi =



























0 if i ≤ 2;

ω if i = 3;

ω′ if i = 4;

1 otherwise.

where0 < ω ≤ ω′ ≤ 1

Thr 3: Algorithm mis solves MIS inO∗(1.26n) time

– p. 34/69

Exercises
Exr 5: Prove Thr 3 (Hint:ω = 0.750, ω′ = 0.951)

Exr 6: What do you expect that would happen if we added one
extra weightω5 = ω′′? Can you guess any pattern?

Exr 7*: Design a better algorithm for MIS, using possibly the
other mentioned reduction rules. Analyze your algorithm inthe
standard way and via Measure & Conquer

Exr 8*: Can you imagine an alternative, promising measure for
MIS?

– p. 35/69

Quasiconvex Analysis of

Backtracking Algorithms

– p. 36/69

Optimal Weights Computation

• When the number of distinct weights grows, an exhaustive
exploration might be too slow

• We next describe a general tool to perform this computation in
an (exponentially) faster way

– p. 37/69

Multivariate Recurrences
• Consider a collection of integralmeasuresm1, . . . ,md,
describing different aspects of the size of the problem considered

EG: In the analysis ofmis we usedm1 = n3 andm2 = n≥4

• These measure naturally induce a set of multivariate recurrence
of the following kind for each branchingb

P (m1, . . . , md) ≤ P (m1 − δb
1,1, . . . , md − δb

d,1) + . . .

+ P (m1 − δb
1,h(b), . . . , md − δb

d,h(b))

Rem: some of theδb
i,j might be negative. For example, deleting

one edge incident to a node of degree4, we decreasen≥4 but
increasen3

– p. 38/69

Multivariate Recurrences
• Solving multivariate recurrences is typically rather complicated

• A common alternative is turning them into univariate
recurrences by considering a linear combination of the measures
(aggregated measure)

m(α) = α1 m1 + . . . + αd md

• Theweightsαi must satisfy the conditionδb
j :=

∑

i αi δ
b
i,j > 0,

i.e. m(α) decreases in each subproblem (we allow≥ 0 for
h = 1)

EG: In the analysis ofmis we usedα1 = ω andα2 = 1. The
condition is satisfied for everyω ∈ [0.5, 1]

– p. 39/69

Multivariate Recurrences
• The resulting set of univariate recurrences can be solved inthe
standard way (for fixed weights)

• In particular, for each branchingb we compute the (unique)
positive rootλb(α) of

f b(λ, α) := 1 −
∑

j

λ−
P

i αiδ
b
i,j

• This gives a running time bound of the kindO∗(λ(α)
P

i αi mi)

where

λ(α) := max
b

λb(α)

– p. 40/69

Quasiconvex Functions

Def: A functionf : D → R, with D ⊆ R
d convex, is

quasiconvex if the set

f≤a := {x ∈ D : f(x) ≤ a}

is convex for anya ∈ R

f(x)

x

a

f≤a

– p. 41/69

Quasiconvex Functions

Thr [Eppstein’01]: Functionλ(α), α ∈ R
d, is quasiconvex

Prf:
• Since the max of a finite number of quasiconvex functions is
quasiconvex, it is sufficient to show that eachλb(α) is
quasiconvex

• λb(α) is the positive root off b(λ, α) = 1 −
∑

j λ−
P

i αiδ
b
i,j

• Hence
λb,≤a = {α ∈ R

d : λb(α) ≤ a} = {α ∈ R
d :

∑

j a−
P

i αiδ
b
i,j ≤ 1}

• gb(α) :=
∑

j a−
P

i αiδ
b
i,j is convex as sum of convex functions,

and trivially its level sets are convex, includinggb,≤1

Cor: Functionλ(α) is quasiconvex over any convexD ⊆ R
d

– p. 42/69

Applications to M&C

• We can use these facts to optimize the weights much faster in
the Measure & Conquer framework

• Suppose we define a set of linear constraints on the weights
such that

(a) the size of each subproblem does not increase
(b) the initial measurem = m(α) is upper bounded byn, where

n is astandardmeasure for the problem

• This gives a convex domain of weightsα. On that domain we
can compute the minimum valueλ(α̃) of the quasiconvex
functionλ(α)

• The resulting running time isO∗(λ(α̃)m(α̃)) = O∗(λ(α̃)n)

– p. 43/69

Randomized Local Search
• There are known techniques to find efficiently the minimum of
a quasi-convex functions (see e.g. [Eppstein’01,Gaspers])

• We successfully applied the following, very fast and easy to
implement, approach based onrandomized local search(in
simulated annealing style)

⋄ We start from any feasible initial valueα
⋄ We add to it a random vector in a given range[−∆,∆]d

⋄ If the resultingα′ is feasible and givesλ(α′) ≤ λ(α), we set
α = α′

⋄ We iterate the process, reducing the value of∆ if no
improvement is achieved for a large number of steps

⋄ The process halts when∆ drops below a given value∆′

– p. 44/69

Randomized Local Search

f(x)

xD

– p. 45/69

Randomized Local Search

f(x)

xD

– p. 45/69

Randomized Local Search

f(x)

xD

– p. 45/69

Randomized Local Search

f(x)

xD

– p. 45/69

Randomized Local Search

f(x)

xD

– p. 45/69

Randomized Local Search

f(x)

xD

– p. 45/69

Randomized Local Search

f(x)

xD

– p. 45/69

Randomized Local Search

f(x)

xD

– p. 45/69

Randomized Local Search

f(x)

xD

– p. 45/69

Randomized Local Search

f(x)

xD

– p. 45/69

Randomized Local Search

f(x)

xD

– p. 45/69

Randomized Local Search

f(x)

xD

Rem: This algorithm does not guarantee closeness to the optimal
λ(α̃). However it is accurate in practice. More important, it
providesfeasibleupper bounds

– p. 45/69

Lower Bounds

– p. 46/69

Lower Bounds
• Measure & Conquer sometimes leads to much better running
time bounds

• Still, these bounds might not be tight

• Hence, it makes sense to search for (exponential) lower bounds
on the running time of the algorithm considered (not of the
problem!)

• A lower bound may give an idea of how far the analysis is from
being tight

– p. 47/69

A Lower Bound for mis

Thr 4: The running time ofmis is Ω(2n/4)

Prf:
• Consider the graphGk consisting ofk = n/4 copies of aK4

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

• The algorithm might branch ata1. In both subproblems
{a1, b1, c1, d1} is removed, either immediately or later on by
folding. This leaves aGk−1

• We obtain a recurrence of the typeP (n) ≥ 2P (n − 4) for the
number of subproblems, which givesP (n) ≥ 2n/4

– p. 48/69

A Lower Bound for mis

Thr 4: The running time ofmis is Ω(2n/4)

Exr 8: Find a larger lower bound on the running time ofmis

(Hint: Ω(3n/6) = Ω(1.20n), maybe better)

Exr 9*: Consider the variant ofmis where the algorithm, after
the base case, branches on connected components when possible.
Can you find a good lower bound on the running time of this
modified algorithm?

Rem: Typically finding lower bounds on connected graphs is
much more complicated

– p. 49/69

Applications of

Measure & Conquer

– p. 50/69

Independent Set

Def: GivenG = (V,E), theindependent setproblem (MIS) is to
determine the maximum cardinalityα(G) of a subset of pairwise
non-adjacent nodes (independent set)

a
b c

de
α(G) = 2

– p. 51/69

Independent Set

Thr [Fomin,Grandoni,Kratsch’06-’09]: MIS can be solved in
O∗(1.221n) time and polynomial space

Prf:
• Simple branching algorithm

int mis(G) {

if(|V (G)| ≤ 1) return |V (G)|;

if(∃ componentC ⊂ G) return mis(C)+mis(G − C);

if(∃ verticesv andw: N [w] ⊆ N [v]) return mis(G − {v});

if(∃ a vertexv, with d(v) = 2) return 1+mis(Gv);

select a vertexv of maximum degree, which minimizes|E(N(v))|;

return max{mis(G − {v} − M(v)), 1+mis(G − N [v])};

}

• Analysis similar to the one outlined before

– p. 52/69

Traveling Salesman Problem

Def: Given a weightedG = (V,E), thetraveling salesman

problemproblem (TSP) is to compute a minimum weight cycle
spanningV (TSP tour)

a

b c

de

2

2

2

1 2

2

4 5

– p. 53/69

Traveling Salesman Problem

Thr [Eppstein’03-’07]: TSP can be solved inO∗(1.260n) time
in cubic graphs

Prf:
• Design a non-trivial branching algorithm

• Analyze it using, as measure,|V | − |F | − |C| ≤ |V |

• HereF is a set offorcededges andC the set of 4-cycles ofG
which induce connected components inG − F

– p. 54/69

3-Coloring

Def: GivenG = (V,E) and a set of3 colors, the3-coloring

problem (3-COL) is to find an assignment of colors to nodes
such that adjacent nodes are colored differently

a

b c

de

– p. 55/69

3-Coloring

Def: Given a set of variables on domains of size≤ a and a set of
constraints each one involving at mostb variables, the
(a, b)-constraint satisfactionproblem (CSP) is to find an
assignment of the variables satisfying all the constraints

Rem: 3-COL is a special case of(3, 2)-CSP

– p. 56/69

3-Coloring

Thr [Beigel,Eppstein’00-’05]: 3-COL can be solved in
O∗(1.329n) time

Prf:
• Non-trivial reduction to(3, 2)-CSP

• Non-trivial branching algorithm solving(4, 2)-CSP in
O∗(1.365n) time

• In the analysis the measure is a linear combinationn3 + α n4 of
the number of variables with domain of size3 and4 (variables
with smaller domain can be filtered out)

– p. 57/69

Dominating Set

Def: GivenG = (V,E), thedominating setproblem (MDS) is to
determine the minimum cardinalityδ(G) of a subset of nodesD
such that any node inV − D is adjacent to some node inD
(dominating set)

a
b c

de
δ(G) = 2

– p. 58/69

Dominating Set

Def: Given a universeU and a collection of subsetsS ⊆ 2U , the
set coverproblem (MSC) is to determine a minimum cardinality
subcollectionC ⊆ S such that∪S∈CS = U (set cover)

Rem: MDS can reduced to MSC by lettingU = V and
S = {N [v] : v ∈ V }. This instance hasn subsets andn elements

a
b c

de

U = {a, b, c, d, e}

Sa = {a, b, e}
Sb = {a, b, c, e}
Sc = {b, c, d}
Sd = {c, d, e}
Se = {a, b, d, e}

– p. 59/69

Dominating Set

Thr [Grandoni’04-’06]: MDS can be solved inO∗(1.803n) time

Proof: Design a simple algorithm solving MSC in
O∗(1.381|U|+|S|) time⇒ O∗(1.3812n) time algo for MDS

int msc(S) {

if(|S| = 0) return 0;

if(∃S, R ∈ S : S ⊆ R) return msc(S\{S});

if(∃u ∈ U(S)∃ a uniqueS ∈ S : u ∈ S) return 1+msc(del(S, S));

takeS ∈ S of maximum cardinality;

if(|S| = 2) return poly-msc(S)

return min{msc(S\{S}), 1+msc(del(S, S))};

}

Exr 10: Prove the theorem above

– p. 60/69

Dominating Set

Thr [Fomin,Grandoni,Kratsch’05-’09]: MDS can be solved in
O∗(1.527n) time

Proof:
• Consider the same reduction to MSC and the same algorithm
as before

• Give a different weight to sets of different cardinality andto
elements of different frequency

Exr 11*: Prove the theorem above

Thr [van Rooij,Bodlaender’08]: MDS can be solved in
O∗(1.507n) time

– p. 61/69

Variants of Dominating Set

Def: GivenG = (V,E), theminimum independent dominating

setproblem (MIDS) is to determine the minimum cardinality of
a dominating set ofG which is also an independent set

Thr [Gasper,Liedloff’06]: MIDS can be solved inO∗(1.358n)

time

Def: GivenG = (V,E), theminimum dominating clique

problem (MDC) is to determine the minimum cardinality of a
dominating set ofG which is also a clique

Thr [Kratsch,Liedloff’07]: MDC can be solved inO∗(1.324n)

time

– p. 62/69

Connected Dominating Set

Def: GivenG = (V,E), theconnected dominating setproblem
(ConDomS) is to determine the minimum cardinalityδ′(G) of a
dominating set ofG which induces a connected graph
(connected dominating set)

a
b c

de
δ′(G) = 2

– p. 63/69

Connected Dominating Set

Thr [Fomin,Grandoni,Kratsch’06-’08]: Connected
dominating set can be solved inO∗(1.941n) time

Proof:
• Design an algorithm which gradually expands a connected
graph, until it becomes dominating

• Assign a different weight to nodes dominating a different
number of nodes not yet dominated

• Assign an extra weight to nodes which are still not selected nor
discarded, giving a smaller extra weight to nodes whose removal
makes the problem infeasible

Rem: without the refined measure one does not improve on
trivial 2n!

– p. 64/69

Combinatorial Bounds via M&C
• M&C can be used to derive better combinatorial bounds

Thr [Fomin,Grandoni,Pyatkin,Stepanov’05-’08]: An n-node
graph hasO∗(1.716n) minimal dominating sets

Prf: Design a listing algorithm and analyze it via M&C

• Listing algorithms can often be used to solve weighted
problems, where reduction rules are harder to get

Thr [Fomin,Grandoni,Pyatkin,Stepanov’05]: The weighted
minimum dominating set problem can be solved inO∗(1.578n)

time

Prf: Use a variant of the listing algorithm above, implementing a
trivial weighted set cover reduction rule

– p. 65/69

Feedback Vertex Set
Def: GivenG = (V,E), thefeedback vertex setproblem (FVS)
is to determine the minimum cardinalityφ(G) of a subset of
nodes whose removal makesG acyclic (feedback vertex set)

a
b c

de
φ(G) = 1

– p. 66/69

Feedback Vertex Set
Thr [Razgon+Fomin,Gaspers,Pyatkin’06-’08]: FVS can be
solved inO∗(1.755n) time

Prf:
• Design an algorithm based on branching rules and maximum
independent sets computation to solve the equivalent maximum
induced forest problem

• Analyze it using, as measure,

0 · |F | + 1 · |N(t)| + (1 + α)|V − F − N(t)|

• HereF is a set of forced nodes andt is anactivenode

– p. 67/69

Apologies

I apologize for related and improved results that I forgot to
mention

– p. 68/69

THANKS!!!

– p. 69/69

	Large The Importance of Being Tight
	Large The Importance of Being Tight
	Large The Importance of Being Tight
	Large Exact Algorithms
	Large Branch & Reduce Algorithms
	Large Bounded Search Trees
	Large Bounded Search Trees
	Large Independent Set
	Large Known Results
	Large Known Results
	Large Reduction Rules
	Large Connected components
	Large Domination
	Large Domination
	Large Mirroring
	Large Mirroring
	Large Folding
	Large Folding
	Large Folding

	Large Folding
	Large Folding
	Large A Simple MIS Algorithm
	Large Standard Analysis of {	t mis}
	Large Standard Analysis of {	t mis}
	Large Standard Analysis of {	t mis}
	Large Standard Analysis of {	t mis}
	Large Standard Analysis of {	t mis}

	Large Measure & Conquer
	Large Measure & Conquer
	Large An Alternative Measure
	Large An Alternative Measure
	Large An Alternative Analysis
	Large An Alternative Analysis
	Large An Alternative Analysis
	Large An Alternative Analysis
	Large An Alternative Analysis

	Large A Better Measure
	Large A Better Measure
	Large A Better Analysis
	Large A Better Analysis
	Large A Better Analysis
	Large A Better Analysis
	Large A Better Analysis
	Large A Better Analysis
	Large A Better Analysis

	Large An Even Better Measure
	Large Exercises
	Large Optimal Weights Computation
	Large Multivariate Recurrences
	Large Multivariate Recurrences
	Large Multivariate Recurrences
	Large Quasiconvex Functions
	Large Quasiconvex Functions
	Large Applications to M&C
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search
	Large Randomized Local Search

	Large Lower Bounds
	Large A Lower Bound for {	t mis}
	Large A Lower Bound for {	t mis}
	Large Independent Set
	Large Independent Set
	Large Traveling Salesman Problem
	Large Traveling Salesman Problem
	Large 3-Coloring
	Large 3-Coloring
	Large 3-Coloring
	Large Dominating Set
	Large Dominating Set
	Large Dominating Set
	Large Dominating Set
	Large Variants of Dominating Set
	Large Connected Dominating Set
	Large Connected Dominating Set
	Large Combinatorial Bounds via M&C
	Large Feedback Vertex Set
	Large Feedback Vertex Set
	Large Apologies

