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The Importance of Being Tight

• (Accurately) measuring the size of relevant quantities is a
crucial step in science and engineering

• Computer science, and in particular algorithm design, is not an
exception

• Tight measures of (worst-case) time/space complexities,
approximation ratios etc. are crucial to understand how good an
algorithm is, and whether there is room for improvement
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The Importance of Being Tight

• Tight bounds sometimes are shown years after the design of an
algorithm

• Still, for several poly-time algorithms we are able to provide
tight running time bounds

EG: The worst-case running time ofMergeSort is Θ(n log n)

• Similarly, we have tight approximation bounds for many
approximation algorithms

EG: The approximation ratio of the classical primal-dual
algorithm for Steiner forest is exactly2
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The Importance of Being Tight

• The overall situation for exact (exp-time) algorithms for
NP-hard problems is much worse

• Typically, tight time bounds are known only for trivial or
almost trivial (enumerative) algorithms

• Nonetheless, most of the research in this field was devoted to
the design of better algorithms, not of better analytical tools

⇒ The aim of this talk is introducing a non-standard analytical
tool, sometimes namedMeasure & Conquer, which leads to
much tighter (though possibly non-tight) running time bounds
for branch & reduce exact algorithms
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Exact Algorithms
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Exact Algorithms

• The aim of exact algorithms is solving NP-hard problems
exactly with the smallest possible (exponential) running time

• Exact algorithms are interesting for several reasons

⋄ Need for exact solutions (e.g. decision problems)

⋄ Reducing the running time from, say,O(2n) to O(1.41n)

roughly doubles the size of the instances solvable within a
given (large) time bound. This can’t be achieved using faster
computers!!

⋄ Classical approaches (heuristics, approximation algorithms,
parameterized algorithms...) have limits and drawbacks (no
guaranty, hardness of approximation,W [1]-completeness...)

⋄ New combinatorial and algorithmic challenges
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Branch & Reduce Algorithms

• The most common exact algorithms are based on thebranch &

reduceparadigm

• The idea is to apply somereduction rulesto reduce the size of
the problem, and then branch on two or more subproblems which
are solved recursively according to somebranching rules

• The analysis of such recursive algorithms is typically based on
thebounded search treetechnique: ameasureof the size of the
subproblems is defined. This measure is used to lower bound the
progressmade by the algorithm at each branching step.

• Though these algorithms are often very complicated, measures
used in their analysis are usually trivial (e.g., number of nodes or
edges in the graph).
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Bounded Search Trees
• Let P (n) be the number of base instances generated to solve a
problem of sizen ≥ 0

• Suppose, as it is usual the case, that the application of reduction
and branching rules takes polynomial time (inn). Assume also
that the branching depth is bounded by a polynomial

• Then the running time of the algorithm is
O(P (n)nO(1)) = O∗(P (n))

⋄ O∗() suppresses polynomial factors

• It is possible to show by induction thatP (n) ≤ λn for a proper
constantλ > 1
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Bounded Search Trees
• Consider a branching/reduction ruleb which generates
h(b) ≥ 1 subproblems. Letn − δb

j be the size of thej-th
subproblem

⋄ It must beδb
j ≥ 0 (indeedδb

j > 0 for h(b) > 1)

⋄ (δb
1, . . . , δ

b
h(b)) is thebranching vector

• We obtain the following inequalities

P (n) ≤

h(b)
∑

j=1

P (n − δb
j) ≤

h(b)
∑

j=1

λn−δb
j ≤ λn ⇒ f b(λ) := 1 −

h(b)
∑

j=1

λ−δb
j ≤ 0

• This gives a lower boundλ ≥ λb, whereλb is the unique
positive root off b(·) (branching factor).

• We can conclude thatλ = maxb{λ
b}
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The Independent

Set Problem
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Independent Set

Def: GivenG = (V,E), themaximum independent setproblem
(MIS) is to determine the maximum cardinalityα(G) of a subset
of pairwise non-adjacent nodes (independent set)

a
b c

de
α(G) = 2
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Known Results
• NP-hard [Karp’72]

• Not approximable withinO(n1−ǫ) unlessP = NP

[Zucherman’06]

• W [1]-complete [Downey&Fellows’95].

• No exactO(λ o(n)) algorithm unless SNP⊆SUBEXP
[Impagliazzo,Paturi,Zane’01]

⇒ The best we can hope for is aO(λn) exact algorithm for some
small constantλ ∈ (1, 2].
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Known Results
• O(1.261n) poly-space [Tarjan&Trojanowski’77]

• O(1.235n) poly-space [Jian’86]

• O(1.228n) poly-space,O(1.211n) exp-space [Robson’86]

• better results for sparse graphs [Beigel’99, Chen,Kanj&Xia’03]

• Thanks to Measure & Conquer, amuch simplerpoly-space
algorithm (≃ 10 lines of pseudo-code against≃ 100 lines in
[Robson’86]) is shown to have time complexityO(1.221n)

[Fomin, Grandoni, Kratsch’06]

⇒ We will consider a similar algorithm, and analyze it in a
similar (but simplified) way
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Reduction Rules
• Let us introduce a few standard reduction rules for MIS

⋄ connected components

⋄ domination

⋄ folding

⋄ mirroring

⋄ ...

• We will use only folding, but in the exercises the other rules
might turn to be useful
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Connected components

Lem 1: Given a graphG with connected components
G1, . . . , Gh,

α(G) =
∑

i

α(Gi)

Rem: One can solve the problems induced by theGi’s
independently
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Domination
Lem 2: If there are two nodesv andw such thatN [v] ⊆ N [w],
there is a maximum independent set which does not containw

⋄ N [x]=N(x)∪{x}

v w

⇒
v w
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Domination
Lem 3: For every nodev, there is a maximum independent set
which either containsv or at least two nodes inN(v).

v

w

⇒
v

w

Exr 1: Prove Lemmas 1, 2, and 3
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Mirroring

Def: A mirror of a nodev is a nodeu ∈ N 2(v) such that
N(v)−N(u) is a (possibly empty) clique

⋄ N 2(v) are the nodes at distance 2 from v

⋄ mirrors ofv are denoted byM(v)

v

u

v

u

v

u

v

u
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Mirroring

Lem 4: For any nodev,
α(G) = max{α(G − v − M(v)), α(G − N [v])}

Exr: Prove Lem 4 (Hint: use Lem 3)
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Folding

Def: Given a nodev with no anti-triangle inN(v), folding v

means

• replacingN [v] with a clique containing one nodeuw for
each anti-edgeuw of N(v);

• adding edges between eachuw and N(u)∪ N(w)-N[v].

⋄ we useGv to denote the graph after folding

v

u w

a b c

⇒
uw

a b c

v

u w z

a b c d

⇒
uz wz

a b c d
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Folding

Def: Given a nodev with no anti-triangle inN(v), folding v

means

• replacingN [v] with a clique containing one nodeuw for
each anti-edgeuw of N(v);

• adding edges between eachuw and N(u)∪ N(w)-N[v].

⋄ we useGv to denote the graph after folding

v

u w

a b c

⇒
uw

a b c

v

u w z

a b c d

⇒
uz wz

a b c d

Rem 1: Folding can increase the number of nodes!
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Folding

Def: Given a nodev with no anti-triangle inN(v), folding v

means

• replacingN [v] with a clique containing one nodeuw for
each anti-edgeuw of N(v);

• adding edges between eachuw and N(u)∪ N(w)-N[v].

⋄ we useGv to denote the graph after folding

v

u w

a b c

⇒
uw

a b c

v

u w z

a b c d

⇒
uz wz

a b c d

Rem 2: Nodes of degree≤ 2 are alwaysfoldable
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Folding

Lem 5: For a foldable nodev, α(G) = 1 + α(Gv)

v

u w z

a b c d

⇔
uz wz

a b c d

v

u w z

a b c d

⇔
uz wz

a b c d

Exr 3: Prove Lem 5 (Hint: use Lem 3)
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Folding

Rem: Lem 5 includes a few standard reductions as special cases

v

u w

a b c

⇒
a b c

v

u w

a b c

⇒
u w

a b c

v

u w

a b c

⇒
w

a b c
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A Simple MIS Algorithm

int mis(G) {
if (G = ∅) return 0; //Base case

//Folding
Takev of minimum degree;
if (d(v) ≤ 2) return 1 +mis(Gv);
//“Greedy” branching
Takev of maximum degree;
return max{ mis(G − v), 1 + mis(G − N [v]) };

}
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Standard Analysis of mis

Thr: Algorithm mis solves MIS inO∗(1.33n) time
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Standard Analysis of mis

Thr: Algorithm mis solves MIS inO∗(1.33n) time

Prf:
• Let P (n) be the number of base instances generated by the
algorithm. We will show by induction thatP (n) ≤ λn for
λ < 1.33

• In the base caseP (0) = 1 ≤ λ0

• When the algorithm folds a node, the number of nodes
decreases by at least one

P (n) ≤ P (n − 1) ≤ λn−1 ≤ λn
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Standard Analysis of mis

Thr: Algorithm mis solves MIS inO∗(1.33n) time

Prf:
• When the algorithm branches at a nodev with d(v) ≥ 4, in one
subproblem it removes1 node (i.e.v), and in the other it removes
1 + d(v) ≥ 5 nodes (i.e.N [v]):

P (n) ≤ P (n − 1) + P (n − 5)

≤ λn−1 + λn−5 ≤ λn (λ ≥ 1.32 . . .)
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Standard Analysis of mis

Thr: Algorithm mis solves MIS inO∗(1.33n) time

Prf:
• Otherwise, the algorithm branches at a nodev of degree
exactly3, hence removing either1 or 4 nodes. However, in the
first case a node of degree2 is folded afterwards, with the
removal of at least2 more nodes

P (n) ≤ P (n − 3) + P (n − 4)

≤ λn−3 + λn−4 ≤ λn (λ ≥ 1.22 . . .)
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Standard Analysis of mis

Thr: Algorithm mis solves MIS inO∗(1.33n) time

Prf:
• Otherwise, the algorithm branches at a nodev of degree
exactly3, hence removing either1 or 4 nodes. However, in the
first case a node of degree2 is folded afterwards, with the
removal of at least2 more nodes

P (n) ≤ P (n − 3) + P (n − 4)

≤ λn−3 + λn−4 ≤ λn (λ ≥ 1.22 . . .)

Rem: This is the best one can get with a standard analysis
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Measure & Conquer
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Measure & Conquer

• The classical approach toimproveonmis would be designing
refined branching and reduction rules. In particular, one tries to
improve on thetight recurrences. The analysis is then performed
in a similar fashion

• In the standard analysis,n is both the measure used in the
analysis and the quantity in terms of which the final time bound
is expressed

• However, one is free to use any, possibly sophisticated,
measurem in the analysis, provided thatm ≤ f(n) for some
known functionf

• This way, one achieves a time bound of the kind
O∗(λm) = O∗(λf(n)), which is in the desired form
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Measure & Conquer

• The idea behind Measure & Conquer is focusing on the choice
of the measure

• In fact, a more sophisticated measure may capture phenomena
which standard measures are not able to exploit, and hence lead
to a tighter analysis of agivenalgorithm

• We next show how to get a much better time bound formis

thanks to a better measure of subproblems size (without
changing the algorithm!)

• We will start by introducing an alternative, simple, measure.
This measure does not immediately give a better time bound, but
it will be a good starting point to define a really better measure
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An Alternative Measure
• Nodes of degree≤ 2 can be removed without branching

• Hence they do not really contribute to thesizeof the problem

• For example, if the maximum degree is2, thenmis solves the
problem in polynomial time!

Idea: define the size of the problem to be the number of nodes of
degree at least3

– p. 28/69



An Alternative Measure
Def: Let ni be the number of nodes of degreei, and
n≥i =

∑

j≥i nj

• We define the size of the problem to bem = n≥3 (rather than
m = n)

Rem: m = n≥3 ≤ n. Hence, if we prove a running time bound
in O∗(λm), we immediately get aO∗(λn) time bound
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An Alternative Analysis

Thr: Algorithm mis solves MIS inO∗(1.33n) time
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An Alternative Analysis

Thr: Algorithm mis solves MIS inO∗(1.33n) time

(Alternative) Prf:
• Let us defineG a base instance if the maximum degree inG is
2 (which impliesm = n≥3 = 0)

• Let moreoverP (m) be the number of base instances generated
by the algorithm to solve an instance of sizem

• By the usual argument the running time isO∗(P (m)). We
prove by induction thatP (m) ≤ λm for λ < 1.33
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An Alternative Analysis

Thr: Algorithm mis solves MIS inO∗(1.33n) time

(Alternative) Prf:
• In the base casem = 0. Thus

P (0) = 1 ≤ λ0

• Let m′ be the size of the problem after folding a nodev. It is
sufficient to show thatm′ ≤ m, from which

P (m) ≤ P (m′) ≤ λm′

≤ λm

• This condition trivially holds when folding only removes nodes

– p. 30/69



An Alternative Analysis

Thr: Algorithm mis solves MIS inO∗(1.33n) time

(Alternative) Prf:
• In the remaining caseN(v) = {u,w} with uw /∈ E. In this
case we remove{v, u, w} and add a nodeuw with
d(uw) ≤ d(u) + d(w) − 2. By case analysism′ ≤ m also in this
case

d(u) d(w) d(uw) m′

2 2 2 m

2 ≥ 3 ≥ 3 m − 1 + 1

≥ 3 ≥ 3 ≥ 4 m − 2 + 1
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An Alternative Analysis

Thr: Algorithm mis solves MIS inO∗(1.33n) time

(Alternative) Prf:
• Suppose now that we branch at a nodev with d(v) ≥ 4. Note
that all the nodes of the graph have degree≥ 3 (since we do not
fold). For t3 = |{u ∈ N(v) : d(u) = 3}|,

P (m) ≤ P (m − 1 − t3) + P (m − 1 − d(v))

≤ P (m − 1) + P (m − 5) ≤ λm−1 + λm−5 ≤ λm (λ ≥ 1.32 . . .)

• Eventually, consider branching atv, d(v) = 3. In this case we
remove either1 or 4 nodes of degree3. However, in the first case
the degree of the3 neighbors ofv drops from3 to 2, with a
consequent further reduction of the size by3

P (m) ≤ P (m − 4) + P (m − 4) ≤ λm−4 + λm−4 ≤ λm (λ ≥ 1.18 . . .)
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A Better Measure
• When we branch at a node of large degree, we decrement by1

the degree of many other nodes

• This is beneficial on long term, since we can remove nodes of
degree≤ 2 without branching

• We are not exploiting this fact in the current analysis

Idea: assign a largerweightωi ≤ 1 to nodes of larger degreei,
and let the size of the problem be the sum of node weights. This
way, when the degree of a node decreases, the size of the
problem decreases as well
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A Better Measure
Def:
• for a constantω ∈ (0, 1] to be fixed later,

ωi =















0 if i ≤ 2;

ω if i = 3;

1 otherwise.

• Let ω(v) = ωd(v)

• the sizem = m(G) of G is

m =
∑

v∈V (G)

ω(v) = ω · n3 + n≥4
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A Better Analysis

Thr: Algorithm mis solves MIS inO∗(1.29n) time

Prf:
• With the usual notation, let us show thatP (m) ≤ λm for
λ < 1.29

• In the base casem = 0, P (0) = 1 ≤ λ0

• In case of folding, letm′ be the size of the subproblem. it is
sufficient to show thatm′ ≤ m. Then

P (m) ≤ P (m′) ≤ λm′

≤ λm

• This condition is satisfied when nodes are only removed (being
the weight increasing with the degree)
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A Better Analysis

Thr: Algorithm mis solves MIS inO∗(1.29n) time

Prf:
• The unique remaining case is thatN(v) = {u,w}, with u and
w not adjacent. In this case we remove{v, u, w}, and add a node
uw with d(uw) ≤ d(u) + d(w) − 2. Hence it is sufficient to
show that

ω(v) + ω(u) + ω(w) − ω(sw) = ω(u) + ω(w) − ω(uw) ≥ 0
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A Better Analysis

Thr: Algorithm mis solves MIS inO∗(1.29n) time

Prf:
• By a simple case analysis

d(u) d(w) d(uw) ω(u) + ω(w) − ω(uw) ≥ 0

2 2 2 0 + 0 − 0 ≥ 0

2 3 3 0 + ω − ω ≥ 0

2 ≥ 4 ≥ 4 0 + 1 − 1 ≥ 0

3 3 4 ω + ω − 1 ≥ 0

3 ≥ 4 ≥ 4 ω + 1 − 1 ≥ 0

≥ 4 ≥ 4 ≥ 4 1 + 1 − 1 ≥ 0

• We can conclude thatω ≥ 1
2

(new constraint on the weights!)
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A Better Analysis

Thr: Algorithm mis solves MIS inO∗(1.29n) time

Prf:
• Consider now branching at a nodev, d(v) ≥ 5. Let di be the
degree of theith neighbor ofv (which thus has weightωdi

). Then

P (m) ≤ P (m − ωd(v) −
∑

i

(ωdi
− ωdi−1)) + P (m − ωd(v) −

∑

i

ωdi
)

≤ P (m − 1 −
5

∑

i=1

(ωdi
− ωdi−1)) + P (s − 1 −

5
∑

i=1

ωdi
)

• Observe that we can replacedi ≥ 6 with di = 5. In fact in both
casesωdi

= 1 andωdi
− ωdi−1 = 0. Hence we can assume

di ∈ {3, 4, 5} (finite number of recurrences!!!)
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A Better Analysis

Thr: Algorithm mis solves MIS inO∗(1.29n) time

Prf:
• By case enumeration

P (m) ≤















































P (m - 1 - 5·ω - 0·(1-ω) - 0·0) + P (m - 1 - 5·ω - 0·1 - 0·1)

P (m - 1 - 4·ω - 1·(1-ω) - 0·0) + P (m - 1 - 4·ω - 1·1 - 0·1)

P (m - 1 - 4·ω - 0·(1-ω) - 1·0) + P (m - 1 - 4·ω - 0·1 - 1·1)

P (m - 1 - 3·ω - 2·(1-ω) - 0·0) + P (m - 1 - 3·ω - 2·1 - 0·1)

. . .

P (m - 1 - 0·ω - 0·(1-ω) - 5·0) + P (m - 1 - 0·ω - 0·1 - 5·1)
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A Better Analysis

Thr: Algorithm mis solves MIS inO∗(1.29n) time

Prf:
• Consider now branching at a nodev, d(v) = 4. By a similar
argument (but withdi ∈ {3, 4})

P (m) ≤







































P (m - 1 - 4·ω - 0·(1-ω)) + P (m - 1 - 4·ω - 0·1)

P (m - 1 - 3·ω - 1·(1-ω)) + P (m - 1 - 3·ω - 1·1)

P (m - 1 - 2·ω - 2·(1-ω)) + P (m - 1 - 2·ω - 2·1)

P (m - 1 - 1·ω - 3·(1-ω)) + P (m - 1 - 1·ω - 3·1)

P (m - 1 - 0·ω - 4·(1-ω)) + P (m - 1 - 0·ω - 4·1)
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A Better Analysis

Thr: Algorithm mis solves MIS inO∗(1.29n) time

Prf:
• Consider eventually branching at a nodev, d(v) = 3. By an
analogous argument (but withω(v) = ω3 = ω anddi = 3)

P (m) ≤ P (m − ω − 3ω) + P (m − ω − 3ω)

• For everyω ∈ [0.5, 1], the set of recurrences above provides an
upper boundλ(ω) onλ. Our goal is minimizingλ(ω) (hence
getting a better time bound)

• Via exhaustive (grid) enumeration, we obtainedω = 0.7 which
givesλ(ω) < 1.29
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An Even Better Measure
• We can extend the previous approach to larger degrees

ωi =



























0 if i ≤ 2;

ω if i = 3;

ω′ if i = 4;

1 otherwise.

where0 < ω ≤ ω′ ≤ 1

Thr 3: Algorithm mis solves MIS inO∗(1.26n) time
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Exercises
Exr 5: Prove Thr 3 (Hint:ω = 0.750, ω′ = 0.951)

Exr 6: What do you expect that would happen if we added one
extra weightω5 = ω′′? Can you guess any pattern?

Exr 7*: Design a better algorithm for MIS, using possibly the
other mentioned reduction rules. Analyze your algorithm inthe
standard way and via Measure & Conquer

Exr 8*: Can you imagine an alternative, promising measure for
MIS?
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Quasiconvex Analysis of

Backtracking Algorithms
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Optimal Weights Computation

• When the number of distinct weights grows, an exhaustive
exploration might be too slow

• We next describe a general tool to perform this computation in
an (exponentially) faster way

– p. 37/69



Multivariate Recurrences
• Consider a collection of integralmeasuresm1, . . . ,md,
describing different aspects of the size of the problem considered

EG: In the analysis ofmis we usedm1 = n3 andm2 = n≥4

• These measure naturally induce a set of multivariate recurrence
of the following kind for each branchingb

P (m1, . . . , md) ≤ P (m1 − δb
1,1, . . . , md − δb

d,1) + . . .

+ P (m1 − δb
1,h(b), . . . , md − δb

d,h(b))

Rem: some of theδb
i,j might be negative. For example, deleting

one edge incident to a node of degree4, we decreasen≥4 but
increasen3
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Multivariate Recurrences
• Solving multivariate recurrences is typically rather complicated

• A common alternative is turning them into univariate
recurrences by considering a linear combination of the measures
(aggregated measure)

m(α) = α1 m1 + . . . + αd md

• Theweightsαi must satisfy the conditionδb
j :=

∑

i αi δ
b
i,j > 0,

i.e. m(α) decreases in each subproblem (we allow≥ 0 for
h = 1)

EG: In the analysis ofmis we usedα1 = ω andα2 = 1. The
condition is satisfied for everyω ∈ [0.5, 1]
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Multivariate Recurrences
• The resulting set of univariate recurrences can be solved inthe
standard way (for fixed weights)

• In particular, for each branchingb we compute the (unique)
positive rootλb(α) of

f b(λ, α) := 1 −
∑

j

λ−
P

i αiδ
b
i,j

• This gives a running time bound of the kindO∗(λ(α)
P

i αi mi)

where

λ(α) := max
b

λb(α)
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Quasiconvex Functions

Def: A functionf : D → R, with D ⊆ R
d convex, is

quasiconvex if the set

f≤a := {x ∈ D : f(x) ≤ a}

is convex for anya ∈ R

f(x)

x

a

f≤a
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Quasiconvex Functions

Thr [Eppstein’01]: Functionλ(α), α ∈ R
d, is quasiconvex

Prf:
• Since the max of a finite number of quasiconvex functions is
quasiconvex, it is sufficient to show that eachλb(α) is
quasiconvex

• λb(α) is the positive root off b(λ, α) = 1 −
∑

j λ−
P

i αiδ
b
i,j

• Hence
λb,≤a = {α ∈ R

d : λb(α) ≤ a} = {α ∈ R
d :

∑

j a−
P

i αiδ
b
i,j ≤ 1}

• gb(α) :=
∑

j a−
P

i αiδ
b
i,j is convex as sum of convex functions,

and trivially its level sets are convex, includinggb,≤1

Cor: Functionλ(α) is quasiconvex over any convexD ⊆ R
d
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Applications to M&C

• We can use these facts to optimize the weights much faster in
the Measure & Conquer framework

• Suppose we define a set of linear constraints on the weights
such that

(a) the size of each subproblem does not increase
(b) the initial measurem = m(α) is upper bounded byn, where

n is astandardmeasure for the problem

• This gives a convex domain of weightsα. On that domain we
can compute the minimum valueλ(α̃) of the quasiconvex
functionλ(α)

• The resulting running time isO∗(λ(α̃)m(α̃)) = O∗(λ(α̃)n)
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Randomized Local Search
• There are known techniques to find efficiently the minimum of
a quasi-convex functions (see e.g. [Eppstein’01,Gaspers])

• We successfully applied the following, very fast and easy to
implement, approach based onrandomized local search(in
simulated annealing style)

⋄ We start from any feasible initial valueα
⋄ We add to it a random vector in a given range[−∆,∆]d

⋄ If the resultingα′ is feasible and givesλ(α′) ≤ λ(α), we set
α = α′

⋄ We iterate the process, reducing the value of∆ if no
improvement is achieved for a large number of steps

⋄ The process halts when∆ drops below a given value∆′
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Randomized Local Search

f(x)

xD
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Randomized Local Search

f(x)

xD

Rem: This algorithm does not guarantee closeness to the optimal
λ(α̃). However it is accurate in practice. More important, it
providesfeasibleupper bounds
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Lower Bounds
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Lower Bounds
• Measure & Conquer sometimes leads to much better running
time bounds

• Still, these bounds might not be tight

• Hence, it makes sense to search for (exponential) lower bounds
on the running time of the algorithm considered (not of the
problem!)

• A lower bound may give an idea of how far the analysis is from
being tight
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A Lower Bound for mis

Thr 4: The running time ofmis is Ω(2n/4)

Prf:
• Consider the graphGk consisting ofk = n/4 copies of aK4

a1

b1

c1

d1

a2

b2

c2

d2

a3

b3

c3

d3

• The algorithm might branch ata1. In both subproblems
{a1, b1, c1, d1} is removed, either immediately or later on by
folding. This leaves aGk−1

• We obtain a recurrence of the typeP (n) ≥ 2P (n − 4) for the
number of subproblems, which givesP (n) ≥ 2n/4
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A Lower Bound for mis

Thr 4: The running time ofmis is Ω(2n/4)

Exr 8: Find a larger lower bound on the running time ofmis

(Hint: Ω(3n/6) = Ω(1.20n), maybe better)

Exr 9*: Consider the variant ofmis where the algorithm, after
the base case, branches on connected components when possible.
Can you find a good lower bound on the running time of this
modified algorithm?

Rem: Typically finding lower bounds on connected graphs is
much more complicated
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Applications of

Measure & Conquer

– p. 50/69



Independent Set

Def: GivenG = (V,E), theindependent setproblem (MIS) is to
determine the maximum cardinalityα(G) of a subset of pairwise
non-adjacent nodes (independent set)

a
b c

de
α(G) = 2
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Independent Set

Thr [Fomin,Grandoni,Kratsch’06-’09]: MIS can be solved in
O∗(1.221n) time and polynomial space

Prf:
• Simple branching algorithm

int mis(G) {

if(|V (G)| ≤ 1) return |V (G)|;

if(∃ componentC ⊂ G) return mis(C)+mis(G − C);

if(∃ verticesv andw: N [w] ⊆ N [v]) return mis(G − {v});

if(∃ a vertexv, with d(v) = 2) return 1+mis(Gv);

select a vertexv of maximum degree, which minimizes|E(N(v))|;

return max{mis(G − {v} − M(v)), 1+mis(G − N [v])};

}

• Analysis similar to the one outlined before
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Traveling Salesman Problem

Def: Given a weightedG = (V,E), thetraveling salesman

problemproblem (TSP) is to compute a minimum weight cycle
spanningV (TSP tour)

a

b c

de

2

2

2

1 2

2

4 5
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Traveling Salesman Problem

Thr [Eppstein’03-’07]: TSP can be solved inO∗(1.260n) time
in cubic graphs

Prf:
• Design a non-trivial branching algorithm

• Analyze it using, as measure,|V | − |F | − |C| ≤ |V |

• HereF is a set offorcededges andC the set of 4-cycles ofG
which induce connected components inG − F
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3-Coloring

Def: GivenG = (V,E) and a set of3 colors, the3-coloring

problem (3-COL) is to find an assignment of colors to nodes
such that adjacent nodes are colored differently

a

b c

de
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3-Coloring

Def: Given a set of variables on domains of size≤ a and a set of
constraints each one involving at mostb variables, the
(a, b)-constraint satisfactionproblem (CSP) is to find an
assignment of the variables satisfying all the constraints

Rem: 3-COL is a special case of(3, 2)-CSP
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3-Coloring

Thr [Beigel,Eppstein’00-’05]: 3-COL can be solved in
O∗(1.329n) time

Prf:
• Non-trivial reduction to(3, 2)-CSP

• Non-trivial branching algorithm solving(4, 2)-CSP in
O∗(1.365n) time

• In the analysis the measure is a linear combinationn3 + α n4 of
the number of variables with domain of size3 and4 (variables
with smaller domain can be filtered out)
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Dominating Set

Def: GivenG = (V,E), thedominating setproblem (MDS) is to
determine the minimum cardinalityδ(G) of a subset of nodesD
such that any node inV − D is adjacent to some node inD
(dominating set)

a
b c

de
δ(G) = 2
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Dominating Set

Def: Given a universeU and a collection of subsetsS ⊆ 2U , the
set coverproblem (MSC) is to determine a minimum cardinality
subcollectionC ⊆ S such that∪S∈CS = U (set cover)

Rem: MDS can reduced to MSC by lettingU = V and
S = {N [v] : v ∈ V }. This instance hasn subsets andn elements

a
b c

de

U = {a, b, c, d, e}

Sa = {a, b, e}
Sb = {a, b, c, e}
Sc = {b, c, d}
Sd = {c, d, e}
Se = {a, b, d, e}
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Dominating Set

Thr [Grandoni’04-’06]: MDS can be solved inO∗(1.803n) time

Proof: Design a simple algorithm solving MSC in
O∗(1.381|U|+|S|) time⇒ O∗(1.3812n) time algo for MDS

int msc(S) {

if(|S| = 0) return 0;

if(∃S, R ∈ S : S ⊆ R) return msc(S\{S});

if(∃u ∈ U(S)∃ a uniqueS ∈ S : u ∈ S) return 1+msc(del(S, S));

takeS ∈ S of maximum cardinality;

if(|S| = 2) return poly-msc(S)

return min{msc(S\{S}), 1+msc(del(S, S))};

}

Exr 10: Prove the theorem above
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Dominating Set

Thr [Fomin,Grandoni,Kratsch’05-’09]: MDS can be solved in
O∗(1.527n) time

Proof:
• Consider the same reduction to MSC and the same algorithm
as before

• Give a different weight to sets of different cardinality andto
elements of different frequency

Exr 11*: Prove the theorem above

Thr [van Rooij,Bodlaender’08]: MDS can be solved in
O∗(1.507n) time
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Variants of Dominating Set

Def: GivenG = (V,E), theminimum independent dominating

setproblem (MIDS) is to determine the minimum cardinality of
a dominating set ofG which is also an independent set

Thr [Gasper,Liedloff’06]: MIDS can be solved inO∗(1.358n)

time

Def: GivenG = (V,E), theminimum dominating clique

problem (MDC) is to determine the minimum cardinality of a
dominating set ofG which is also a clique

Thr [Kratsch,Liedloff’07]: MDC can be solved inO∗(1.324n)

time
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Connected Dominating Set

Def: GivenG = (V,E), theconnected dominating setproblem
(ConDomS) is to determine the minimum cardinalityδ′(G) of a
dominating set ofG which induces a connected graph
(connected dominating set)

a
b c

de
δ′(G) = 2
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Connected Dominating Set

Thr [Fomin,Grandoni,Kratsch’06-’08]: Connected
dominating set can be solved inO∗(1.941n) time

Proof:
• Design an algorithm which gradually expands a connected
graph, until it becomes dominating

• Assign a different weight to nodes dominating a different
number of nodes not yet dominated

• Assign an extra weight to nodes which are still not selected nor
discarded, giving a smaller extra weight to nodes whose removal
makes the problem infeasible

Rem: without the refined measure one does not improve on
trivial 2n!
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Combinatorial Bounds via M&C
• M&C can be used to derive better combinatorial bounds

Thr [Fomin,Grandoni,Pyatkin,Stepanov’05-’08]: An n-node
graph hasO∗(1.716n) minimal dominating sets

Prf: Design a listing algorithm and analyze it via M&C

• Listing algorithms can often be used to solve weighted
problems, where reduction rules are harder to get

Thr [Fomin,Grandoni,Pyatkin,Stepanov’05]: The weighted
minimum dominating set problem can be solved inO∗(1.578n)

time

Prf: Use a variant of the listing algorithm above, implementing a
trivial weighted set cover reduction rule
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Feedback Vertex Set
Def: GivenG = (V,E), thefeedback vertex setproblem (FVS)
is to determine the minimum cardinalityφ(G) of a subset of
nodes whose removal makesG acyclic (feedback vertex set)

a
b c

de
φ(G) = 1
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Feedback Vertex Set
Thr [Razgon+Fomin,Gaspers,Pyatkin’06-’08]: FVS can be
solved inO∗(1.755n) time

Prf:
• Design an algorithm based on branching rules and maximum
independent sets computation to solve the equivalent maximum
induced forest problem

• Analyze it using, as measure,

0 · |F | + 1 · |N(t)| + (1 + α)|V − F − N(t)|

• HereF is a set of forced nodes andt is anactivenode
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Apologies

I apologize for related and improved results that I forgot to
mention
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THANKS!!!
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